We present new state-of-the-art benchmarks for paraphrase detection on all six languages in the Opusparcus sentential paraphrase corpus: English, Finnish, French, German, Russian, and Swedish. We reach these baselines by fine-tuning BERT. The best re
sults are achieved on smaller and cleaner subsets of the training sets than was observed in previous research. Additionally, we study a translation-based approach that is competitive for the languages with more limited and noisier training data.
Multilingual pre-trained models have achieved remarkable performance on cross-lingual transfer learning. Some multilingual models such as mBERT, have been pre-trained on unlabeled corpora, therefore the embeddings of different languages in the models
may not be aligned very well. In this paper, we aim to improve the zero-shot cross-lingual transfer performance by proposing a pre-training task named Word-Exchange Aligning Model (WEAM), which uses the statistical alignment information as the prior knowledge to guide cross-lingual word prediction. We evaluate our model on multilingual machine reading comprehension task MLQA and natural language interface task XNLI. The results show that WEAM can significantly improve the zero-shot performance.
Although exposure bias has been widely studied in some NLP tasks, it faces its unique challenges in dialogue response generation, the representative one-to-various generation scenario.In real human dialogue, there are many appropriate responses for t
he same context, not only with different expressions, but also with different topics. Therefore, due to the much bigger gap between various ground-truth responses and the generated synthetic response, exposure bias is more challenging in dialogue generation task.What's more, as MLE encourages the model to only learn the common words among different ground-truth responses, but ignores the interesting and specific parts, exposure bias may further lead to the common response generation problem, such as I don't know'' and HaHa?'' In this paper, we propose a novel adaptive switching mechanism, which learns to automatically transit between ground-truth learning and generated learning regarding the word-level matching score, such as the cosine similarity. Experimental results on both Chinese STC dataset and English Reddit dataset, show that our adaptive method achieves a significant improvement in terms of metric-based evaluation and human evaluation, as compared with the state-of-the-art exposure bias approaches. Further analysis on NMT task also shows that our model can achieve a significant improvement.
Recent multilingual pre-trained models, like XLM-RoBERTa (XLM-R), have been demonstrated effective in many cross-lingual tasks. However, there are still gaps between the contextualized representations of similar words in different languages. To solve
this problem, we propose a novel framework named Multi-View Mixed Language Training (MVMLT), which leverages code-switched data with multi-view learning to fine-tune XLM-R. MVMLT uses gradient-based saliency to extract keywords which are the most relevant to downstream tasks and replaces them with the corresponding words in the target language dynamically. Furthermore, MVMLT utilizes multi-view learning to encourage contextualized embeddings to align into a more refined language-invariant space. Extensive experiments with four languages show that our model achieves state-of-the-art results on zero-shot cross-lingual sentiment classification and dialogue state tracking tasks, demonstrating the effectiveness of our proposed model.
Loading models pre-trained on the large-scale corpus in the general domain and fine-tuning them on specific downstream tasks is gradually becoming a paradigm in Natural Language Processing. Previous investigations prove that introducing a further pre
-training phase between pre-training and fine-tuning phases to adapt the model on the domain-specific unlabeled data can bring positive effects. However, most of these further pre-training works just keep running the conventional pre-training task, e.g., masked language model, which can be regarded as the domain adaptation to bridge the data distribution gap. After observing diverse downstream tasks, we suggest that different tasks may also need a further pre-training phase with appropriate training tasks to bridge the task formulation gap. To investigate this, we carry out a study for improving multiple task-oriented dialogue downstream tasks through designing various tasks at the further pre-training phase. The experiment shows that different downstream tasks prefer different further pre-training tasks, which have intrinsic correlation and most further pre-training tasks significantly improve certain target tasks rather than all. Our investigation indicates that it is of great importance and effectiveness to design appropriate further pre-training tasks modeling specific information that benefit downstream tasks. Besides, we present multiple constructive empirical conclusions for enhancing task-oriented dialogues.
In the context of neural passage retrieval, we study three promising techniques: synthetic data generation, negative sampling, and fusion. We systematically investigate how these techniques contribute to the performance of the retrieval system and ho
w they complement each other. We propose a multi-stage framework comprising of pre-training with synthetic data, fine-tuning with labeled data, and negative sampling at both stages. We study six negative sampling strategies and apply them to the fine-tuning stage and, as a noteworthy novelty, to the synthetic data that we use for pre-training. Also, we explore fusion methods that combine negatives from different strategies. We evaluate our system using two passage retrieval tasks for open-domain QA and using MS MARCO. Our experiments show that augmenting the negative contrast in both stages is effective to improve passage retrieval accuracy and, importantly, they also show that synthetic data generation and negative sampling have additive benefits. Moreover, using the fusion of different kinds allows us to reach performance that establishes a new state-of-the-art level in two of the tasks we evaluated.
Seq2seq models have demonstrated their incredible effectiveness in a large variety of applications. However, recent research has shown that inappropriate language in training samples and well-designed testing cases can induce seq2seq models to output
profanity. These outputs may potentially hurt the usability of seq2seq models and make the end-users feel offended. To address this problem, we propose a training framework with certified robustness to eliminate the causes that trigger the generation of profanity. The proposed training framework leverages merely a short list of profanity examples to prevent seq2seq models from generating a broader spectrum of profanity. The framework is composed of a pattern-eliminating training component to suppress the impact of language patterns with profanity in the training set, and a trigger-resisting training component to provide certified robustness for seq2seq models against intentionally injected profanity-triggering expressions in test samples. In the experiments, we consider two representative NLP tasks that seq2seq can be applied to, i.e., style transfer and dialogue generation. Extensive experimental results show that the proposed training framework can successfully prevent the NLP models from generating profanity.
As the labeling cost for different modules in task-oriented dialog (ToD) systems is expensive, a major challenge is to train different modules with the least amount of labeled data. Recently, large-scale pre-trained language models, have shown promis
ing results for few-shot learning in ToD. In this paper, we devise a self-training approach to utilize the abundant unlabeled dialog data to further improve state-of-the-art pre-trained models in few-shot learning scenarios for ToD systems. Specifically, we propose a self-training approach that iteratively labels the most confident unlabeled data to train a stronger Student model. Moreover, a new text augmentation technique (GradAug) is proposed to better train the Student by replacing non-crucial tokens using a masked language model. We conduct extensive experiments and present analyses on four downstream tasks in ToD, including intent classification, dialog state tracking, dialog act prediction, and response selection. Empirical results demonstrate that the proposed self-training approach consistently improves state-of-the-art pre-trained models (BERT, ToD-BERT) when only a small number of labeled data are available.
News recommendation techniques can help users on news platforms obtain their preferred news information. Most existing news recommendation methods rely on centrally stored user behavior data to train models and serve users. However, user data is usua
lly highly privacy-sensitive, and centrally storing them in the news platform may raise privacy concerns and risks. In this paper, we propose a unified news recommendation framework, which can utilize user data locally stored in user clients to train models and serve users in a privacy-preserving way. Following a widely used paradigm in real-world recommender systems, our framework contains a stage for candidate news generation (i.e., recall) and a stage for candidate news ranking (i.e., ranking). At the recall stage, each client locally learns multiple interest representations from clicked news to comprehensively model user interests. These representations are uploaded to the server to recall candidate news from a large news pool, which are further distributed to the user client at the ranking stage for personalized news display. In addition, we propose an interest decomposer-aggregator method with perturbation noise to better protect private user information encoded in user interest representations. Besides, we collaboratively train both recall and ranking models on the data decentralized in a large number of user clients in a privacy-preserving way. Experiments on two real-world news datasets show that our method can outperform baseline methods and effectively protect user privacy.
Further pre-training language models on in-domain data (domain-adaptive pre-training, DAPT) or task-relevant data (task-adaptive pre-training, TAPT) before fine-tuning has been shown to improve downstream tasks' performances. However, in task-oriente
d dialog modeling, we observe that further pre-training MLM does not always boost the performance on a downstream task. We find that DAPT is beneficial in the low-resource setting, but as the fine-tuning data size grows, DAPT becomes less beneficial or even useless, and scaling the size of DAPT data does not help. Through Representational Similarity Analysis, we conclude that more data for fine-tuning yields greater change of the model's representations and thus reduces the influence of initialization.