Do you want to publish a course? Click here

System Design to Recognize of Time Plans Labels Using Neoural Networks

تصميم نظام للتعرف على مسميات المخططات الزمنية باستخدام الشبكات العصبونية

1615   0   21   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This paper introduces a system to recognize labels of time plans, where labels are extracted from time plan. This labels are images, so spatial segmentation is used to extract images of labels only. Size of images of labels are made same using median's algorithm for two purposes. The first one is to create database training for used neural networks. The second is to recognizing's processing. Two methods of recognizing are dependent on using neural networks technic: classification using perceptron network and recognizing using back propagation network. Perceptron network is built to take image as input and to give classification index as output for label. Then label is recognize dependent on stored table of ASCII for label. Back propagation network is designed to recognize images for all letters of English alphabet that are used in time plan. Results of research appear efficiency of designed system to recognize labels of time plan from their images for both methods after system had been applied on three time plans.

References used
HARALICK;ROBERT M.; and LINDA G. Shapiro, Computer and Robot Vision, Volume I, Addison-Wesley, 1992, 28-48
JAIME S. Cardoso;PEDROCarvalho;LUÍS F. Teixeira; Luís Corte-Real,Partitiondistance methods for assessing spatial segmentations of images and videos, Computer Vision and Image Understanding, Volume 113, Issue 7, July 2009
CHAOBO Min;JUNJU Zhang; Benkang Chang;BIN Sun; Yingjie Li,Spatio-temporal segmentation of moving objects using edge features in infrared videos; Optik - International Journal for Light and Electron Optics, Volume 125, Issue 7, April 2014
rate research

Read More

In recent years, the problem of classifying objects in images has increased by using deep learning as a result of the industrial sector requirements. Despite of many algorithms used in this field, such as Deep Learning Neural Network DNN and Convolut ional Neural Network CNN, the proposed systems to address this problem Lack of comprehensive solution to the difficulties of long training time and floating memory during the training process, low rating classification. Convolutional Neural Networks (CNNs), which are the most used algorithms for this task, were a mathematical pattern for analyzing images data. A new deep-traversal network pattern was proposed to solve the above problems. The aim of the research is to demonstrate the performance of the recognition system using CNNs networks on the available memory and training time by adapting appropriate variables for the bypass network. The database used in this research is CIFAR10, which consists of 60000 colorful images belonging to ten categories, as every 6,000 images are for a class of these items. Where there are 50,000 training images and 10,000 test tubes. When tested on a sample of selected images from the CIFAR10 database, the model achieved a rating classification of 98.87%.
The contribution of our research include building an artificial neural network in MATLAB program environment and improvement of maximum loading point algorithm, to compute the most critical voltage stability margin, for on-line voltage stability a ssessment, and a method to approximate the most critical voltage stability margin accurately. a method to create a (ARTIFICIAL NEURAL NETWORK) approach.
أتت فكرة المشروع من الأهمية المتزايدة للنظم المفتوحة المصدر في أيامنا هذه لاسيما الإمكانات الواسعة التي تتيحها هذه النظم في مجال إدارة الشبكات, حيث يهدف مشروعنا إلى إظهار مزايا نظام Ubuntu وذلك من خلال عرض وإعداد مجموعة من الخدمات التي يقدها في مجال إدارة الشبكات, وبالتالي إظهار الفائدة العلمية والعملية منها, حيث نرى الجانب العلمي من خلال شرح ماتقوم به كل خدمة وماهي البروتوكولات والآليات التي تبنى عليها الخدمة, والتي أيضاً تظهر بشكل واضح من خلال الجانب العملي لكل خدمة لمافيه من عرض شامل للفائدة التي يمكن الحصول عليها.
This paper presents a new technique based on artificial neural networks (ANNs) to correct power factor. A synchronous motor controlled by the neural controller was used to handle the problem of reactive power compensation of the system, in order to correct power factor. In this paper, the electrical system and the neural controller were simulated using MATLAB. The results have shown that the presented technique overcomes the problems in conventional compensators (using static capacitors) such as time delay and step changes of reactive power besides to the fast compensation compared to the technique with capacitors groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا