Do you want to publish a course? Click here

The production of 3D models of urban areas, using aerial photographs, is of great benefit to companies and small engineering offices. But the major problem is the high cost of Digital Photogrammetry Workstations (DPWS) that are currently used for the production of this kind of models. In addition, the use of these workstations requires long experience and good knowledge in photogrammetry. In this paper, we propose an alternative solution for 3D modeling of urban areas from a stereoscopic pair of aerial photos, a low cost close range photogrammetry software and the applications of 3D modeling available in some Geographic Information System (GIS) platforms. The close range photogrammetry software is a low coast system, compared to DPWS, and it doesn’t require any spatial background in photogrammetry. This software is used to extract the heights of elements that exist in the study area. GIS is used to produce the 2D map from the aerial photo. This map and the height data are used later to produce the 3D model of the study area.
3D models of historical sites and monuments are very interesting in archaeology and digital tourism fields. These models help archeologists document historical sites and analyze the relationships between their components. Moreover, 3D models constitu te an attractive factor that encourages visiting sites and presents virtual information about cultural heritage. In this paper, we propose an approach that uses capabilities of CAD (Computer Aided Design) and GIS (Geographic Information System) systems to construct spatial and semantic database for historical sites and modeling them in 3D. Users of the mentioned database can use it to gather information about sites and to navigate across them via the animation capabilities in GIS. The proposed ideas will be applied on the historical site of Ras-SHAMRA in Lattakia. Spatial data concerning the site will be acquired form a topographic plan designed in 2004. These data will then be processed and introduced into GIS environment. ArcGIS software will be used to achieve an Archeological Information System (AIS) for the site and to construct a 3D model of the site and the royal palace.
In close range photogrammetry, the required geometric data for object documentation can be obtained from single photo or stereoscopic pairs of photos. But, the documentation of large historic monuments, the stereo pair is not sufficient. So, we mus t use many photos to cover the whole object. In this study, a new approach for 3D modeling of historic monuments is presented. This one is the multi-images approach. It takes the complicated geometric nature of object to be documented. This kind of modeling is one of most important applications of close range photogrammetry. In this study the results the multi-images approach is exposed by a practical example concerned a historic façade in Housn Souleman (Safita). We used digital photos obtained by the digital camera Kodak 8MP. This camera has a good geometric resolution suitable for precise documentation works. To achieve the modeling, some well known software for documentation purposes were used.
Geographic Information Systems (GIS) present one of the most important 3D modeling techniques of cities, which has become a very important and necessary for representing of contemporary cities, and doing different analyses, with the aim of finding so lutions to the problems raised through a virtual model of reality. In addition, 3D GIS play an important role in urban planning. Despite the presence of a large number of programs capable of dealing with 3D objects, many of these applications require high technologies and advanced tools for the representation and analysis of 3D objects. The objects of 3D models represented in GIS can be associated with a set of queryable attributes, and this is not available in other 3D modeling software. This Research aims to highlight the importance of procedural 3D modeling of cities in GIS environment using ESRI CityEngine. A set of CGA (computer generated architecture) rules - programmed by procedural modeling language in CityEngine- will be presented to generate realistic 3D models that can represent all elements of cities and its infrastructure. Then, all the objects will be exported to a Web Scene viewer, which allows the creation a comprehensive platform to present a system to support decision-making, and facilitate project management related to the management of cities. The research methods will be applied to Tartous governorate through designing and modeling of proposed residential area. This study will include CGA rules applied to create a 3D model of proposed area, it will show the importance of GIS in modeling and representation of cities.
Geographic Information Systems (GIS) present one of the most important 3D modeling techniques of cities, which has become a very important and necessary for representing of contemporary cities, and doing different analyses, with the aim of finding solutions to the problems raised through a virtual model of reality. In addition, 3D GIS play an important role in urban planning. Despite the presence of a large number of programs capable of dealing with 3D objects, many of these applications require high technologies and advanced tools for the representation and analysis of 3D objects.
The importance of research lies in the need to keep pace with the technological development of computer systems and technologies Modern methods, especially geographic information systems, in collecting, storing, analyzing and exiting Spatial inform ation and linking it to metadata, modeling and scenarios Planners and decision-makers to assist them in planning and finding appropriate solutions for various problems.
Three dimensional modeling of utility networks is an important mean of networks design, implementation, management and maintenance. During the modeling process, we face a wide range of processes and procedures to arrive at the correct final model. T his research proposes a semi-automatic methodology for 3D modeling of infrastructure networks in GIS environment. This methodology is based on the ModelBuilder in ArcGIS software by developing two tools to automate the construction processes of 3D networks. The first presents a tool to create a 3D Manhole layer from points, and the second is a tool to create a 3D pipe layer. For both tools, a work algorithm has been built, in addition to designing user interfaces elements. These tools are stored in a Toolbox called “3D Manhole & Pipe.tbx”. The proposed methodology is an easy and an effective way to build 3D network models, and the developed tools allow the implementation of a set of necessary processes needed to build 3D networks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا