Do you want to publish a course? Click here

The experiment was grown in a Randomized Complete Blocks Design with three replications during two seasons. Generations means analysis method was used to study the genetic parameters for number of days to heading, number of days to maturity, plant height, number of spikes per plant, number of grains per spike and grain yield per plant of two bread wheat crosses Triticum aestivum L. (Gairwel7 x Douma4), (Azaz1 x Soued), Results have shown that both additive and dominance genetic effects were high significant in most evaluated traits, with predominance of the dominance genetic effects’ values. Also, epistatic genetic effects have contributed to inheritance of most studied traits. The signs of dominance and dominance x dominance were opposite in most examined traits indicating duplicate epistasis for all studied traits of the first cross and for number of days to maturity, plant height and number of grains per spike of the second cross, that indicates that the selection for these traits should be delayed after several generations. High phenotypic variations were composed of high genotypic variations and less of environmental variations, indicating the presence of high genetic variability for different traits and less influence of environment. Highly significant heterosis relative to mid and better parents in F1 was recorded for most characters, accompanied with inbreeding depression for all traits in F2. Narrow sense heritability and genetic advance were low in most cases due to the dominant of non-additive genetic action in controlling the genetic variation of the most studied traits.
The present investigation was conducted during 2010/2011 and 2011/2012 growing seasons at Karahta station for field crops research, General Commission for Scientific Agricultural Researches (G.C.S.A.R.), Syria. Forty five hybrids F1 produced using a half diallel cross among ten bread wheat (Triticum aestivum L.) genotypes, in 2010/2011 season, were evaluated during 2011/2012 season in order to study som of the genetic parameters for grain yield per plant, its components, some morphophysiological and quality traits to determine the basic criteria for selection.
Seven cotton varieties ( Rakka5, Aleppo133, Aleppo90, Aleppo118 , Aleppo40, Deir22, Line124) were grown in village Salhab ( Al-Ghab region , Hama) in 2012 using randomized complete block design with three replications. were used to study estimation of variance, broad sense heritability, genetic progress and correlation some of their technological characters (Staple length mm, Length uniformity% , Fiber fineness %(micronaire), trength Fiber(g/tex), Fiber elongation%, fiber maturity%), that’s to explore potentials Genotypes in search region and put the numerous selectoral evidence in order to obtain an additive and fast improve on the technological characters, The study showed significant differences between in the studied genotypes, for most of the considered traits. The study suggested a variation of the values of Heritability, Genetic advance in the characteristics technological of cotton., the highest Heritability of which was in the Staple length and than trength Fiber, Fiber elongation , Fiber fineness, fiber maturity, Length uniformity, characteristics where the inheritance degree reached (0.98, 0.97, 0.89, 0.80,0.75, 0.30) , genetic development% (1.03, 1.35, 0.36, 1.31,1.22, 0.11). The results also showed a positive significant correlation between Staple length and trength Fiber (r = 0.901**), also between Fiber elongation with fiber maturity and Length uniformity ( r = 0.64**, r = 0.422**), and this gives us the area and ease of movement to put the numerous selectoral evidence in order to improve the technological characters of cotton.
Seven cotton varieties (Rakka 5, Aleppo133, Aleppo 90, Aleppo 118, Aleppo 40, Deir 22, and Line124) were used in the study of some quantitative characteristics of cotton yield and its components (seed cotton weight per boll/g, 100seed/g weight aver age, lint percentage %, seed cotton weight per plant/g, total dry matter weight, seed cotton yield per unit area kg/ha), and physiological qualities (leaf area cm2, leaf area index %). The seven varieties were grown in Salhab (Al-Ghab region, Hama) in 2012 using randomized complete block design with three replications. The study included estimating variance, broad sense heritability, genetic progress, and genetic correlation between cotton yield and its components, which is to be used in breeding programs.
This study was carried out at Karahta Station, Dept. of Field Crops Researches, General Commission for Scientific Agriculture Researches (GCSAR) Damascus, Syria, during the growing seasons (2009-2010, 2010-2011). The crosses were grown inatrial us ing randomized complete block design (RCBD) with three replicates in order to evaluate number of spikes per plant, number of grains per spike, thousand kernel weight and grain yield per plant and estimate some genetic indices: broad scenes heritability (BSH), narrow scenes heritability (NSH), and genetic advance (GA). Seeds of five populations of the three evaluated single hybrids were formed by crossing of five inbred lines. Analysis of variance results showed significant differences among mean values of the five populations of each cross for all studied traits. The results revealed that the broad scenes heritability ranged between high and moderate for the following productivity traits (SP/PL, GR/SP, TKW and GY/P) and it was (75, 40, 57) (38, 80, 38) (74, 60, 85) and (73, 73, 71) for the three crosses, respectively. Additive gene action noticed on most traits indicated less selection cycles to improve these traits.
The experiment was carried out at two planting dates in a Randomized Complete Blocks Design with three replications at Maize Research Department, General Commission for Scientific Agriculture Researches (G.C.S.A.R.) Damascus, Syria, during two cro pping season 2011 and 2012 to study the phenotypic and genotypic coefficients of variation, heritability, genetic advance, phenotypic correlation and path coefficient analysis for grain yield per plant, its components and the height of plant and ear of two maize hybrids (IL.292-06 × IL.565-06, IL.459-06 × IL.362-06).
The research was conducted at the Maize Researches Department, General Commission for Scientific Agriculture Researches (G.C.S.A.R.) Damascus, Syria during the summer growing seasons of 2010, 2011 and 2012. Treatments were arranged in a Randomized Complete Blocks Design with three replications. The research aimed to evaluate genetic parameters for some traits like days to 50% silking, plant and ear height, ear length, ear diameter, number of rows per ear, number of kernels per row, 100 kernel weight and grain yield per plant using generations means analysis of two maize hybrids (IL.292-06 × IL.565-06, IL.459-06 × IL.362-06) to detect epistasis and estimates of mean effect [m], additive [d], dominance [h], additive × additive [i], additive × dominance [j] and dominance × dominance [l] parameters. Results showed that the additive - dominance model was adequate to demonstrate the genetic variation and its importance in the inheritance of most studied traits. Nonallelic gene interaction was operating in the control of genetic variation in most studied traits. The signs of [h] and [l] were opposite in most studied traits for the two crosses. Also, the inheritance of all studied traits was controlled by additive and non-additive genetic effects, but dominance gene effects play the major role in controlling the genetic variation of the most studied traits, suggesting that the improvement of those characters need intensive selection through later generations. The phenotypic variations were greater than genotypic variations for all studied traits in the two crosses, indicating greater influence of environment in the expression of these traits. Highly significant heterosis relative to mid and better parents, respectively was found for all characters, and this accompanied with inbreeding depression for all traits. Narrow sense heritability and genetic advance were low in most of the traits due to the dominance of non-additive gene action in controlling the genetic variation of the most studied traits and this predict low to medium values of genetic advance through selection process.
This study was carried out through the cooperation between Faculty of Agricultural Damascus University and General Commission of Agricultural Scientific Researches in Karahta station of field crops researches during 2010- 2011 and 2011-2012 succes sive seasons. Four hybrids of durum wheat namely (Duma1*Sauady), (Buhuth9*Q88), (Sham7*Q130) and (Horaney*Q131) were evaluated to estimate heritability, genetic advance, heterosis and inbreeding depression for days to heading ,grain filing period, plant height, number of spikes per plant, and number of grains per plant. The mean average for all these traits revealed highly significant differences among crosses. Low in protein content trait (23-69%), medium in grain yield per plant (38-70) and high heritability in thousand kernel weight (62-81%) were found. All hybrids showed the highest for both mid and better parents heterosis for protein content and gluten traits. High heritability was accompanied by high genetic advance for thousand kernel weight. Low heritability was coupled with low genetic advance for grain yield per plant, protein content and gluten. However, greater magnitude of heritability coupled with higher genetic advance in some traits provided that these parameters were under the control of additive genetic effects. This indicates that selection should lead to fast genetic improvement of the material. Moreover, the high genetic correlations for most of the traits, suggested a strong inherent association among these traits at the genetic level. Thus these traits deserve better attention in future breeding programs for evolving better wheat in stress environments.
This study was conducted at the farm of Faculty of Agricultural –Kharabo as an intensive crop during 201 and 2012 growing seasons. Using the Randomized Complete Block Design (RCBD) with two replications to study some genetic indices for grain yiel d and its components, of 79 families of the Sh group of maize improved by Full-sib selection. The results indicated that the broad sense heritability ranged from high to moderate for some yield components (number of kernels per row, number of rows per ear, ear length, ear diameter, the weight of whole ear, whole kernel weight and grain yield and it was 49.6, 52.9, 46.3 79.7, 56.74, 51 and 85.2%) respectively. Additive gene action appeared to be controlling number of kernel per row, number of rows per ear, ear length, ear diameter،,grain yiel, the weight of whole ea, kernel weight indicating less selection cycles are required to improve yield depending on its components.
This research was conducted at the Maize Research Department (Kharaboo) of General Commission of Science Agriculture Research (GCSAR), Damascus, Syria, during the growing seasons of 2009, 2010 ad, 2011 to study the genetic behavior of days to 50% silking, plant height, ear length, 100 grains weight and yield per plant by using generation mean analysis (GMA) of two individual hybrids of maize, to estimate the heritability, Phenotypic (PCV), and genotypic (GCV) coefficient variations and the genetic advance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا