Do you want to publish a course? Click here

Contribution in removal water hardness by soda ash which formed from hearth firewood

مساهمة في إزالة قساوة المياه باستخدام الرماد المتشكل من المواقد الحطبية

1633   0   0   0.0 ( 0 )
 Publication date 2018
  fields Chemistry
and research's language is العربية
 Created by عبدالله بريمو




Ask ChatGPT about the research

This study aims to use the ash formed from the burning of firewood and the different pruning residues to remove the hardness of water Soda ash was characterized using different techniques, including XRD,flame spectroscopy , volume titration and others. These methods aim to determine the composition of the ash and the components which are contributing to the removal process. The optimum mixing time was determined using certain amount of soda ash to the hard water and the water hardness was determined in the rang of time (0.5, 1, 2, 3, 4 and 5h) where the ideal time was 3 hours. The removal ratios were determined when the mixing time of the two phases was 3 h, and adding directly the following quantities of ash (0.5,1,2,3,5,7,10,15,20,25) g to 200 ml of highly hardened water. The removal rate was increased by increasing the amount of added ash. The removal rate was approximately 50% when 1 g of ash was used and the complete removal rate of 100% was achieved when the amount of ash was 25 g.



References used
No references
rate research

Read More

This study aims to use the ash formed from the burning of firewood and the different pruning residues to remove the hardness of water Soda ash was characterized using different techniques, including XRD,flame spectroscopy , volume titration and ot hers. These methods aim to determine the composition of the ash and the components which are contributing to the removal process. The optimum mixing time was determined using certain amount of soda ash to the hard water and the water hardness was determined in the rang of time (0.5, 1, 2, 3, 4 and 5h) where the ideal time was 3 hours. The removal ratios were determined when the mixing time of the two phases was 3 h, and adding directly the following quantities of ash (0.5,1,2,3,5,7,10,15,20,25) g to 200 ml of highly hardened water. The removal rate was increased by increasing the amount of added ash. The removal rate was approximately 50% when 1 g of ash was used and the complete removal rate of 100% was achieved when the amount of ash was 25 g.
The changes in coefficient of distribution of lead and cupper has been studied in system with two phases, liquid water contaminated with lead and copper-solid (natural Phosphate of Syria) correlation of the following factors: Time of mixing phases, size of the developed steel ,change the values of PH ,concentration of elemental lead and concentration of element capper ,the concentration of calcium as a competitor to the occupation of sites available on the solid phase, the ratio V\m presents the water phase size on the mass of phase ,the Percentage removal of lead from aqueous samples prepared in the laboratory91,57-99,95% were the best conditions for a vast proportion removed can be summarized as follows: PH=[6,63-10,11], Time of mixing phases =60 minutes and V/m=1000. The Percentage removal of copper from aqueous samples prepared in the laboratory 95,27 -99,96 % were the best conditions for a vast proportion removed can be summarized as follows: PH= [7,89-11,01] , Time of mixing phases =60 minutes and V/m=1000. Ideal conditions have been applied that were obtained according to laboratory tests on water samples from industrial input to Banias refinery and water samples from industrial drainage to Syrian company for oil transport after Removal for lead was( 100%,99 %). Removal for copper was( 100%,98 %) .
This research aims to study the effectiveness of each(ferric chloride , ash and coffee dregs) to remove phosphorus from Lattakia Port Laboratories' waste water which is assembled in a separate sewage pit by doing laboratory experiments on water con taining high concentrations of phosphorus, whether real wastewater or standard solutions of phosphorus oxide. Where it has been experimenting with ferric chloride at doses as weight average(FeCl3/P = (0-5)) to give effectiveness ratios(70- 80)% with determining the value of the pH-compliant and it was noted re-releasing of phosphorus time after(10-12) hours of the start of precipitation, beside that it has been experimenting with ash as adsorpted agent at doses as weight average(Ash/P = (2-4.5)) to give effectiveness ratio which it had reached to 98% where it was noted re-releasing of phosphorus after 11 hours with determining the pH values of approval for that, As coffee dregs when added in doses)Coffee dreg/P = 3-10) as weight average, it fulfilled proportion removal(40 - 99) % and phosphorus re-released after 24 hours. The outcome of these experiments was to propose the most appropriate economic solution in the case of study.
This invention relates to process for preventing both corrosion and the formation of scale in water- conducting systems which comprises adding a zinc carbonate and hydroxyl ethylene diphosphoric acid (HEDA) to water. The main problems arising in hy draulic engineering, e.g. when untreated water for cooling purposes are the occurrence of corrosion and the formation of scale. The corrosion of metals such as steel, copper and alloys of these metals which commonly used for water circulation tanks is mainly due to the action of oxygen, carbon dioxide ,chloride gas , chloride ions and many others ions dissolved in the water. The prevention of corrosion by forming thin film of complex HEDA and zinc ions which actions with corrosion ions while the prevention of scale by forming heat stable soluble complexes with calcium and magnesium.
In the present work, batch electrocoagulation experiments were carried out to evaluate the removal of polycyclic aromatic hydrocarbon (PAHs) from water using aluminum electrodes. The effects of initial pH, current density, electrolysis time, initi al concentration of PAHs, electrolyte type, and electrolyte concentration were investigated to achieve the optimal removal efficiency. The results indicated that the electrocoagulation utilizing the aluminum, as anode and cathode, was an efficient tool in the reduction of these contaminants. The treatment process was found to be largely affected by the current density and the initial composition of water. The removal rate was significantly increased using NaCl as an electrolyte where indirect oxidation by hypochlorite forming later during the treatment was occurred. The results demonstrated that the technical feasibility of the electrocoagulation as a possible and reliable technique for the treatment of PAHs contaminants in water.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا