Do you want to publish a course? Click here

This paper presents a study of the possibility of modifying the surface of Syrian zeolite samples from anionic to cationic form using cationic surfactant Hexadecyltrimethylammonium bromide (HDTMA-Br), in order to use the modified zeolite in remova l of anionic contaminants from polluted solutions. Samples were obtained from Tel Mekhalat area and exploratory well No. 21 at different depths.
The study was carried out to remove of heavy metals (V+5, Ni+2) under static conditions from aqueous solutions by Syrian Zeolite mineral extracted from south of Syria. The results revealed that operational conditions such as initial solution pH and concentration, adsorbent particle size, the presence of competing cations, are able to affect the adsorption capacity and efficiency of natural zeolite.
Pollution by heavy metals, due to their toxic nature and other adverse effects, is one of the most serious environmental problems. Many heavy metal ions, such as mercuric ions are detected in industrial wastewaters originating from metal plating, mining activities, paint manufacture, etc. This ion isn’t biodegradable and tends to accumulate in living organisms, causing various diseases and disorders. Therefore, it should be removed from aqueous solution before discharge.
In this work the use of natural magnetite in coast sand of Wadi-kandil area in Syria in removal of Methylene Blue (MB) from aqueous solution was studied. The XRD measurements showed that the sample contents the crystalline magnetite and another co mpounds. The magnetite in the simple was separated using magnetic method and the percentage of magnetite in the sample about 70 %. After separating the magnetite was used to removal the MB from aqueous solution at different initial concentration of MB (5 , 10 , 20 , 40 , 60 mg/l ) and using different dosage of magnetite (0.2 , 0.5 , 1 g) at different values of pH and temperature 25° C. The adsorption of MB increasing by increasing initial concentration of MB and decreasing by increasing of pH value and the removal of MB was clearly increased when the dosage of magnetite was increased , the removal values were 47.8% , 84.9% , 88.7% for magnetite dosage (0.2 , 0.5 , 1 g) respectively at concentration 5 mg/l of MB . While the adsorbed amount of MB per mass unit of magnetite was decreased because the adsorption sites weren't saturated. The Treatment of adsorption data according Lngmuere and Frenglish models showed that the adsorption process accrued on the energetic homogeneous and heterogeneous sites.
In this work the process of removal of zinc ions from aqueous solutions was studied using natural Syrian zeolite. Two samples were used: natural zeolite Z and modified zeolite with NaCl solution Z-Na. The removal percentage of zinc ions vs. time was determined using differential initial concentrations of Zn+2: 50,100,200,300,400 mg/L. The contact time was determined and it was 360 min. The removal of Zn+2 ions as a function of temperature and pH have been studied. It was found the increasing of removal percentage by increasing temperature and increasing when pH increasing up to ~7,then the precipitation of zinc hydroxide accurse. The Langmuire adsorption isotherm equation used to calculate the maximum sorption capacity and it was 21.7 and 28.5 mg/g for Z and Z-Na respectively. Results indicate a significant potential for the natural and modified zeolite as an adsorbent/ion-exchange materials for heavy metal removal.
Studied the distribution coefficient of elemental copper and lead contaminants in the aqueous phase using a Bi-phase system: solid phase (the sands of Palmyra) and liquid phase (water containing the former two elements), where they were sampling sand samples from different regions in Palmyra to investigate for possible use as an adsorbent for elemental copper the lead from contaminated water, and after adjustment for certain transactions from time mixing phases, granular size, concentration of hydrogen ions, the concentration of the contaminated ingredient, the concentration of rival element (calcium) in addition to the ratio v / m in order to get the best rate for removal of these elements. The removal rate of copper componentamounted to 99.9% using four sites samples of sand a Palmyra, (al qareaten - the third leg to pump crude oil T3 - Alhl field - the valley between Mount aldahek and Sokhna) For lead removal ratio stood at 76.35% for the qareaten and 87.75% of the station the third to pump crude oil and 95 0.0% of the field Alhl and 96.25% of the valley between Mount aldahek and Sukhna. The application of the conditions that we have obtained in the laboratory to industrial water samples from the water income for the unity of treatment in Banias refinery and Water Company Drinaj of the Syrian Company for Oil Transport and the ratio of the removal of lead in the four samples ranging from ( 97.79 - 100)% for water Banias Refinery Company ranged between (83.89 - 88.08)% for water Syrian Company for Oil Transport, while the percentage of removal of the copper in the four samples ranging from (96.52 - 99.37)% for water Banias refinery Company and ranged ratio remove copper from the Syrian Company for Oil Transport water between (82.66 - 96.28)% in four samples.
This study illustrates, and compares the results of the removal of phosphate ions from aqueous solutions by using substances that have affinity to these ions, i.e., these ions have relatively a high adsorbing tendency toward these substances. Thre e different adsorbing substances were used, they are alumina, synthesized gatite, and hydrotalcite (abbreviation: HT). The results showed that chemical equilibrium was achieved quickly in the case of HT. Regarding the relative adsorbing ability of these three substances toward phosphate, and its removal from aqueous solutions, it was found that both synthesized gatite, and ignited HT at 500°C were both effective. The removal of phosphate ions was maximum at pH=5. Ionic strength showed a positive effect on the adsorption efficiency. The maximum adsorbing ability of these two adsorbing materials was about 150 mg PO3 -4-P per gram of the adsorbing HT; whereas the minimum efficiency was for aluminum oxide.
The study was carried out on the sorption of heavy metals (Pb+2, Zn+2) under static conditions from single- and multicomponent aqueous solutions by Syrian Zeolite mineral extracted from south Syria. The removal has an ion-exchange nature and consis ts of three stages: the adsorption on the surface of microcrystals, the inversion stage, and the moderate adsorption in the interior of the microcrystal, The study showed that equilibrium time is 6 hours, and The slight difference between adsorption capacity of the Zeolite toward lead, zinc from single- and multicomponent solutions may testify to individual sorption centers of the zeolite for each metal. The maximum sorption capacity toward pb2+ is determined as 33.89 mg/g at an equilibrium concentration of 261.07 mg/L and toward Zn+2 as 29.18 mg/g at 309.818 mg/L. Langmuir and Freundlich Adsorption Isotherms were used to evaluate natural zeolite adsorption performance for Lead, Zinc. These Isotherms were able to provide suitable fit with experimental data, the factor R2 ranged between 0.95 – 0.99, with better fit to Langmuir Isotherm.
This research aims to study the effectiveness of each(ferric chloride , ash and coffee dregs) to remove phosphorus from Lattakia Port Laboratories' waste water which is assembled in a separate sewage pit by doing laboratory experiments on water con taining high concentrations of phosphorus, whether real wastewater or standard solutions of phosphorus oxide. Where it has been experimenting with ferric chloride at doses as weight average(FeCl3/P = (0-5)) to give effectiveness ratios(70- 80)% with determining the value of the pH-compliant and it was noted re-releasing of phosphorus time after(10-12) hours of the start of precipitation, beside that it has been experimenting with ash as adsorpted agent at doses as weight average(Ash/P = (2-4.5)) to give effectiveness ratio which it had reached to 98% where it was noted re-releasing of phosphorus after 11 hours with determining the pH values of approval for that, As coffee dregs when added in doses)Coffee dreg/P = 3-10) as weight average, it fulfilled proportion removal(40 - 99) % and phosphorus re-released after 24 hours. The outcome of these experiments was to propose the most appropriate economic solution in the case of study.
Carried out a laboratory experiment in order kinetics study of adsorption of cadmium and lead in the soil, using soil columns experiment, with the use of concentration 26.25 mg / l for cadmium, and 27.81 mg / l for lead, and two degrees of pH 5.5, 0.7, with the use of five parameters.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا