Do you want to publish a course? Click here

The Effect Of Adding Time Factor On The Artificial Neural Network Performance In Estimating Daily Evaporation In Mountainous Region From Syrian Coast

تأثير إضافة معامل الزمن على أداء الشبكة العصبية الاصطناعية في تقدير التّبخر اليومي في المنطقة الجبلية من الساحل السوري

1355   0   98   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This study is aiming at building a mathematical model to estimate evaporation from Mountainous region in Syrian Coast, using an artificial neural network, based on four metrological parameters (i.e. temperature, relative humidity, wind speed and sun hours), then studying the effect of adding time variable on evaporation estimation. The mathematical model was built by the (NN-tool box), which is one of the MATLAB tools, using the daily value of the above mentioned parameters in addition to time, as the network inputs and the evaporation measured from the American pan class A as the network output . The results show that ANN4+T model which have 5 inputs (temperature, relative humidity, wind speed, sun hours, time) is the best in estimation evaporation with correlation factor of 0.8919 and Mean square error of 0.02166 for the validation set where the correlation factor in ANN4 (without time) was 0.8324 and MSE of 0.0327for the validation set.

References used
Jadeja, V, Artificial neural network estimation of Reference Evapotranspiration from pan evaporation in a semi-arid environment. National Conference on Recent Trends in Engineering & Technology, 13-14 May 2011
Kumar,P. et al, Evaporation Estimation Using Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference System Techniques , Pakistan Journal of Meteorology, Vol. 8, Issue 16: Jan 2012, 81-88
SAMMEN, S. Forecasting of evaporation from Hemeren reservoir by using artificial neural networks. College of Engineering, Diyala University, Iraq. 2012
rate research

Read More

Evaporation forms one of the hydrology cycle elements that it's hard to measure its actual amounts in the field conditions, so it’s estimated by calculations of experimental relations, which depend on climatic elements data. So the research goal is t o build a mathematical model to estimate monthly evaporation amount in plain area of Syrian Coast, using Artificial Neural Network (ANN), and depending on dry air temperature, and produce comparison study between the results of network and other models. The mathematical model was built by the (NN-tool box), which is one of the v tools. A multilayer ANN architecture of error Back-propagation algorithm was built. The suitable training algorithms, number of hidden layers, number of neurons in each hidden layer, were determined. The results showed that the ANN (1-9-1) was the best model with MSE of 0.0032 for validation group, using Transfer Function Logsigmoid and Linear in hidden and output layers, respectively. A comparison model for the results obtained from the proposed ANN with EVANOV model by using SIMULINK technique was developed. This indicated that the ANN using temperature only gives results more accurate than EVANOV equation in determining evaporation.
Rainfall is highly non-linear and complicated phenomena, which require nonlinear mathematical modeling and simulation for accurate prediction. This study comparing the performance of the prediction of one-day-ahead, where Two Feed Forward Neural N etwork FFNN models were developed and implemented to predict the rainfall on daily for three months (December, January, February). These models are Artificial Neural Network traditional (ANN) model and artificial neural network technique combined with wavelet decomposition (Wavelet- Neural) According to two different methods to build a model using two types of wavelets of Daubechies family (db2, db5). In order to compare the performance of the models in their ability to predict the rains on short-term (for one and two and three-days-ahead) the last months of the period of study, used some statistical standards, These parameters include the Root Mean Square Error RMSE, Coefficient Of Correlation (R).
The stability analysis of coastal structure is very important because it involves many design parameter s to be considered for the save and economical design of structure. In the present study neural network technique is adopted to predict the stab ility number of rubble mound breakwater. One model is constructed based on the parameters which influence on the stability of rubble mound breakwater, the back propagation algorithm is used in training network . Agood correlation is obtained between network predicted stabilityand estimated ones. Correlation coefficient=0.88.
Evapotranspiration forms one of the hydrology cycle elements that it's hard to measure its actual amounts in the field conditions, so it’s estimated by calculations of experimental relations that depend on climatic elements data. These estimations include different errors because of approximation processes. The research goals to accurate estimation of the monthly reference evapotranspiration amount in Safita area (on the east coast of the Mediterranean Sea), and the research depends on the technique of Artificial Neural Network (ANN), and the mathematical model was built by the (nftool), which is one of the Matlab tools, depending on monthly air temperature and relative humidity data which were taken from Safita meteorological station, and the data of monthly pan evaporation (Class A pan) has been used, after modifying its results, for the purpose of checking the performance accuracy of the network, by using Simulink technique, which is existing in Matlab Programs Package. The results of the research verify that a multi-layer ANN of error Back-propagation algorithm gives a good result in estimating monthly reference Evapo-transpiration for the used data group.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا