تعد دراسة استقرار المنشآت البحرية من المواضيع الهامة جداً و ذلك لأنها تتضمن الأخذ بعين الاعتبار الكثير من البارامترات من أجل الوصول إلى التصميم الهندسي الآمن و الاقتصادي لمثل هذه المنشآت.
تتضمن الدراسة الحالية تقنية شبكة عصبية اصطناعية لتوقع عدد الاستقرار للمكاسر الركامية, حيث تم بناء شبكة عصبية اعتماداً على البارامترات المؤثرة على استقرار المكسر, و من ثم استخدمت خوارزمية الانتشار العكسي للخطأ في تدريب الشبكة.
تبين نتيجة الدراسة أن هناك ارتباطاً كبيراً بين القيم المحسوبة من الشبكة و القيم المأمولة (المحسوبة من علاقة van der meer) حيث بلغ معامل الارتباط 0.88.
The stability analysis of coastal structure is very important because it involves many
design parameter s to be considered for the save and economical design of structure.
In the present study neural network technique is adopted to predict the stability
number of rubble mound breakwater.
One model is constructed based on the parameters which influence on the stability of
rubble mound breakwater, the back propagation algorithm is used in training network .
Agood correlation is obtained between network predicted stabilityand estimated
ones.
Correlation coefficient=0.88.
Artificial intelligence review:
Research summary
تتناول هذه الدراسة استخدام الشبكات العصبية الاصطناعية في تحليل استقرار المكاسر الركامية. تعتبر دراسة استقرار المنشآت البحرية من المواضيع الهامة لأنها تتطلب مراعاة العديد من البارامترات للوصول إلى تصميم آمن واقتصادي. تم بناء نموذج شبكة عصبية اصطناعية يعتمد على البارامترات المؤثرة على استقرار المكسر، واستخدمت خوارزمية الانتشار العكسي للخطأ في تدريب الشبكة. أظهرت النتائج وجود ارتباط كبير بين القيم المحسوبة من الشبكة والقيم المأمولة، حيث بلغ معامل الارتباط 0.88. تهدف الدراسة إلى تحسين دقة التوقعات المتعلقة باستقرار المكاسر الركامية مقارنة بالطرق التجريبية التقليدية مثل علاقة Van der Meer. تم استخدام أداة NFTool في برنامج MATLAB لبناء الشبكة العصبية، وتم تقسيم البيانات إلى مجموعات تدريب، تحقق، واختبار. أظهرت النتائج أن الشبكة العصبية قادرة على تقديم توقعات دقيقة لأعداد الاستقرار، مما يعزز من إمكانية استخدامها في تصميم المكاسر الركامية بشكل أكثر دقة وكفاءة.
Critical review
دراسة نقدية: تعتبر هذه الدراسة خطوة مهمة نحو تحسين دقة التوقعات المتعلقة باستقرار المكاسر الركامية باستخدام الشبكات العصبية الاصطناعية. ومع ذلك، هناك بعض النقاط التي يمكن النظر فيها لتحسين البحث. أولاً، يمكن توسيع قاعدة البيانات المستخدمة في تدريب الشبكة لتشمل مجموعة أكبر من الحالات والتجارب الميدانية، مما يزيد من دقة وموثوقية النتائج. ثانياً، يمكن مقارنة أداء الشبكة العصبية مع تقنيات أخرى مثل الشبكات العصبية التلافيفية أو الشبكات العصبية المتكررة لمعرفة ما إذا كانت هناك تحسينات إضافية يمكن تحقيقها. أخيراً، يمكن النظر في تأثير عوامل بيئية أخرى مثل التغيرات المناخية وارتفاع مستوى سطح البحر على استقرار المكاسر، وإدراج هذه العوامل في النموذج لتحسين دقته وشموليته.
Questions related to the research
-
ما هي أهمية دراسة استقرار المكاسر الركامية؟
تعتبر دراسة استقرار المكاسر الركامية مهمة لأنها تساهم في تصميم منشآت بحرية آمنة واقتصادية، وتأخذ في الاعتبار العديد من البارامترات المؤثرة على استقرار هذه المنشآت.
-
ما هي التقنية المستخدمة في هذه الدراسة لتحليل استقرار المكاسر الركامية؟
استخدمت الدراسة تقنية الشبكات العصبية الاصطناعية لتحليل استقرار المكاسر الركامية، حيث تم بناء نموذج يعتمد على البارامترات المؤثرة واستخدمت خوارزمية الانتشار العكسي للخطأ في تدريب الشبكة.
-
ما هو معامل الارتباط الذي تم الحصول عليه بين القيم المحسوبة من الشبكة والقيم المأمولة؟
بلغ معامل الارتباط بين القيم المحسوبة من الشبكة العصبية والقيم المأمولة 0.88، مما يدل على دقة التوقعات التي تقدمها الشبكة.
-
ما هي أداة البرمجيات المستخدمة في بناء الشبكة العصبية في هذه الدراسة؟
تم استخدام أداة NFTool في برنامج MATLAB لبناء الشبكة العصبية الاصطناعية في هذه الدراسة.
References used
MANDAL,S; RAO.S; MANJUNATHA,R.Y; KIM.D.H. Stability Analysis Rubble Mound Breakwater Using ANN, fourth Indian National Conference on Harbour and Ocean Engineering, 2007, 551-560
MANDAL,S; RAO.S; MANJUNATHA,R.Y; KIM.D.H. Stability prediction of Berm Breakwater Using Neural Networks, Dubai, 2008, 1-11
MEER,V.D. Rock Slops and Gravel Beaches Under Wave attack, phD Thesis, Delft University of Technology, 1988, 214
Rainfall is highly non-linear and complicated phenomena, which require nonlinear
mathematical modeling and simulation for accurate prediction. This study
comparing the performance of the prediction of one-day-ahead, where Two
Feed Forward Neural N
Weather forecasting (especially rainfall) is one of the most important and challenging
operational tasks carried out by meteorological services all over the world. Itis furthermore
a complicated procedure that requires multiple specialized fields o
This study has reached to that ANN (5-9-1) (five neurons in input
layer_nine neurons in hidden layer _ one neuron in output layer) is the
optimum artificial network that hybrid system has reached to it with
mean squared error equals (1*10^-4) (0.7
The contribution of our research include building an artificial neural
network in MATLAB program environment and improvement of
maximum loading point algorithm, to compute the most critical
voltage stability margin, for on-line voltage stability a
Evapotranspiration is an important component of the
hydrologic cycle, and the accurate prediction of this parameter is
very important for many water resources applications. Thus, the
aim of this study is prediction of monthly reference
evapotranspiration using Artificial Neural Networks (ANNs) and
fuzzy inference system (FIS).