محرك بحث أكاديمي في 9076 بحث علمي عربي موثوق من 38 جامعة
بحث متقدم
ترتيب حسب
فلترة حسب
دراسة الهياكل الجيولوجية المكشوفة على سطح الأرض ذات أهمية كبيرة بشكل عام وخصوصا في التصميم الهندسي والبناء. في هذا البحث ، استخدمنا 2206 صورة مع 12 ملصق للتعرف على الهياكل الجيولوجية بناءً على نموذج Inception-v3. تم اعتماد الصور ذات التدرج الرمادي و اللون في النموذج. كما تم بناء نموذج الشبكة العصبية التلافيفية (CNN) وتم تطبيق خوارزمية أقرب جار (KNN) والشبكة العصبية الاصطناعية (ANN) وتعزيز التدرج الشديد (XGBoost) في تصنيف الهياكل الجيولوجية بناءً على الميزات المستخرجة من مكتبة رؤية الكمبيوتر مفتوحة المصدر (OpenCV). أخيرًا ، تمت مقارنة أداء الطرق الخمس وأظهرت النتائج أن أداء KNN و ANN و XGBoost كان ضعيفًا وبدقة أقل من 40.0٪. أما CNN فعد عانت من فرط التدريب Overfitting. كان للنموذج الذي تم تدريبه باستخدام التعلم بالنقل تأثير كبير على مجموعة بيانات صغيرة من صور التركيب الجيولوجي. وأفضل نموذجين وصلوا إلى دقة 83.3٪ و 90.0٪ على التوالي. هذا يدل على أن النسيج هو السمة الرئيسية في هذا البحث. يمكن أن يستخرج التعلم القائم على نموذج التعلم العميق ميزات بيانات البنية الجيولوجية الصغيرة بشكل فعال ، وهو قوي في تصنيف صور الهيكل الجيولوجي.
هدفت هذه الدراسة إلى بناء نموذج لمحددات قيمة العلامة التجارية من خلال مجموعة من هذه المحددات وذلك اعتمادا على مجموعة من الدراسات والابحاث
يهدف البحث للتعرف على بعض خصائص مزارعي محصول القمح في محافظة الحسكة وتحديد احتياجاتهم الارشادية في هذا المحصول
في الآونة الأخيرة، تم عرض فئة من تقنيات التتبع تسمى "التتبع عن طريق الكشف" لإعطاء نتائج واعدة بسرعات في الوقت الحقيقي، تقوم هذه الطرق بتدريب المصنف التمييزي بطريقة عبر الانترنت لفصل الكائن عن الخلفية. يعمل المصنف على تمهيد نفسه باستخدام حالة التعقب الحالية لاستخراج أمثلة إيجابية وسلبية من الإطار الحالي. وبالتالي ، يمكن أن تؤدي الأخطاء الطفيفة في المتعقب إلى أمثلة تدريب مصنفة بشكل غير صحيح ، مما يؤدي إلى تدهور المصنف ويمكن أن يتسبب في الانجراف. في هذه الورقة ، نوضح أن استخدام التتبع البسيط عبر الإنترنت وفي الوقت الفعلي ( SORT) وهو نهج عملي لتتبع الكائنات المتعددة مع التركيز على خوارزميات بسيطة و فعالة.