ترغب بنشر مسار تعليمي؟ اضغط هنا

الهدف من هذه الدراسة هو تقديم تحليل لتأثير تطبيق ChatGPT في التعليم، بناءً على مراجعة منهجية للأدبيات. تم الحصول على البيانات من خلال مراجعة نتائج الدراسات المنشورة منذ إطلاق هذا التطبيق (نوفمبر 2022) في ثلاث قواعـــد بيانات علميــــة رائــدة في مجال التعليم وهي (Web of Science, Taylor& Francis Online, Eric) وتم إجراء المراجعة على 18 دراسة. تم عرض البيانات باستخدام المنهجية الوصفية والكمية. أظهرت النتائج أن تنفيذ ChatGPT في البيئة التعليمية له تأثير إيجابي على عملية التدريس والتعلم، ومع ذلك، تسلط النتائج أيضًا الضوء على عدة موضوعات كالعوامل التي تحدد موقف الطلاب تجاه التطبيق، والآثار الإيجابية والسلبية، وكيفية ضمان النزاهة الأكاديمية عند تطبيق الذكاء الاصطناعي في التعليم. ومن الضروري معالجة هذه التحديات ووضع استراتيجيات لضمان التنفيذ المسؤول والعادل. على الرغم من أن ChatGPT يمكن أن يعزز التجربة التعليمية، إلا أن تنفيذه الناجح يتطلب أن يكون المعلمون والطلاب على دراية بعمله. توفر هذه النتائج أساسًا متينًا للبحث المستقبلي واتخاذ القرارات فيما يتعلق باستخدام ChatGPT في السياق التعليمي.
483 - arxiv 2022 كتاب
النماذج اللغوية الكبيرة "المضبوطة للتعليمات" (التي تم ضبطها للاستجابة للتعليمات) قد أظهرت قدرة ملحوظة على التعميم بدون أي تدريب في مهام جديدة. ومع ذلك، فإنها تعتمد بشدة على بيانات التعليمات المكتوبة بواسطة الإنسان والتي تكون محدودة في الكمية والتنوع والإبداع، مما يعيق عملية التعميم للنموذج المضبوط. نقدم "Self-Instruct"، وهو إطار عمل لتحسين قدرات اتباع التعليمات لنماذج اللغة المدربة مسبقًا عن طريق الاستفادة من توليداتها الخاصة. يقوم خط أنابيبنا بتوليد عينات من التعليمات والإدخال والإخراج من نموذج اللغة، ثم يقوم بتقليصها قبل استخدامها لضبط النموذج الأصلي. باستخدام طريقتنا على GPT3 الأساسية، نظهر تحسينًا مطلقًا بنسبة 33٪ على نموذج Super-NaturalInstructions الأصلي، وهو متوافق مع أداء InstructGPT_001، والذي يتم تدريبه باستخدام بيانات مستخدم خاصة وتعليمات بشرية. لتقييم أعمق، نحن نضع مجموعة من التعليمات المكتوبة من قبل خبراء للمهام الجديدة، ونظهر من خلال التقييم البشري أن ضبط GPT3 باستخدام Self-Instruct يفوق استخدام مجموعات بيانات التعليمات العامة الموجودة حاليًا بفارق كبير، ولا يترك سوى فجوة بنسبة 5٪ خلف InstructGPT_001. يوفر Self-Instruct طريقة تقريبًا خالية من التعليقات لمزامنة نماذج اللغة المدربة مسبقًا مع التعليمات، ونحن نطلق مجموعة بيانات اصطناعية كبيرة لتسهيل الدراسات المستقبلية حول ضبط التعليمات.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا