We study the two-particle wave function of paired atoms in a Fermi gas with tunable interaction strengths controlled by Feshbach resonance. The Cooper pair wave function is examined for its bosonic characters, which is quantified by the correction of
Bose enhancement factor associated with the creation and annihilation composite particle operators. An example is given for a three-dimensional uniform gas. Two definitions of Cooper pair wave function are examined. One of which is chosen to reflect the off-diagonal long range order (ODLRO). Another one corresponds to a pair projection of a BCS state. On the side with negative scattering length, we found that paired atoms described by ODLRO are more bosonic than the pair projected definition. It is also found that at $(k_F a)^{-1} ge 1$, both definitions give similar results, where more than 90% of the atoms occupy the corresponding molecular condensates.
We investigate the Coulomb excitation of low-lying states of unstable nuclei in intermediate energy collisions ($E_{lab}sim10-500$ MeV/nucleon). It is shown that the cross sections for the $E1$ and $E2$ transitions are larger at lower energies, much
less than 10 MeV/nucleon. Retardation effects and Coulomb distortion are found to be both relevant for energies as low as 10 MeV/nucleon and as high as 500 MeV/nucleon. Implications for studies at radioactive beam facilities are discussed.
We treat Kollars injectivity theorem from the analytic (or differential geometric) viewpoint. More precisely, we give a curvature condition which implies Kollar type cohomology injectivity theorems. Our main theorem is formulated for a compact Kahler
manifold, but the proof uses the space of harmonic forms on a Zariski open set with a suitable complete Kahler metric. We need neither covering tricks, desingularizations, nor Lerays spectral sequence.
We present an algorithm that produces the classification list of smooth Fano d-polytopes for any given d. The input of the algorithm is a single number, namely the positive integer d. The algorithm has been used to classify smooth Fano d-polytopes fo
r d<=7. There are 7622 isomorphism classes of smooth Fano 6-polytopes and 72256 isomorphism classes of smooth Fano 7-polytopes.
We introduce a family of rings of symmetric functions depending on an infinite sequence of parameters. A distinguished basis of such a ring is comprised by analogues of the Schur functions. The corresponding structure coefficients are polynomials in
the parameters which we call the Littlewood-Richardson polynomials. We give a combinatorial rule for their calculation by modifying an earlier result of B. Sagan and the author. The new rule provides a formula for these polynomials which is manifestly positive in the sense of W. Graham. We apply this formula for the calculation of the product of equivariant Schubert classes on Grassmannians which implies a stability property of the structure coefficients. The first manifestly positive formula for such an expansion was given by A. Knutson and T. Tao by using combinatorics of puzzles while the stability property was not apparent from that formula. We also use the Littlewood-Richardson polynomials to describe the multiplication rule in the algebra of the Casimir elements for the general linear Lie algebra in the basis of the quantum immanants constructed by A. Okounkov and G. Olshanski.
The results of the spectral, energetical and temporal characteristics of radiation in the presence of the photonic flame effect are presented. Artificial opal posed on Cu plate at the temperature of liquid nitrogen boiling point (77 K) being irradiat
ed by nanosecond ruby laser pulse produces long- term luminiscence with a duration till ten seconds with a finely structured spectrum in the the antistocks part of the spectrum. Analogous visible luminescence manifesting time delay appeared in other samples of the artificial opals posed on the same plate. In the case of the opal infiltrated with different nonlinear liquids the threshold of the luminiscence is reduced and the spatial disribution of the bright emmiting area on the opal surface is being changed. In the case of the putting the frozen nonlinear liquids on the Cu plate long-term blue bright luminiscence took place in the frozen species of the liquids. Temporal characteristics of this luminiscence are nearly the same as in opal matrixes.
We review recent progress in operator algebraic approach to conformal quantum field theory. Our emphasis is on use of representation theory in classification theory. This is based on a series of joint works with R. Longo.
The pure spinor formulation of the ten-dimensional superstring leads to manifestly supersymmetric loop amplitudes, expressed as integrals in pure spinor superspace. This paper explores different methods to evaluate these integrals and then uses them
to calculate the kinematic factors of the one-loop and two-loop massless four-point amplitudes involving two and four Ramond states.
The aim of the present paper is to provide a global presentation of the theory of special Finsler manifolds. We introduce and investigate globally (or intrinsically, free from local coordinates) many of the most important and most commonly used speci
al Finsler manifolds: locally Minkowskian, Berwald, Landesberg, general Landesberg, $P$-reducible, $C$-reducible, semi-$C$-reducible, quasi-$C$-reducible, $P^{*}$-Finsler, $C^{h}$-recurrent, $C^{v}$-recurrent, $C^{0}$-recurrent, $S^{v}$-recurrent, $S^{v}$-recurrent of the second order, $C_{2}$-like, $S_{3}$-like, $S_{4}$-like, $P_{2}$-like, $R_{3}$-like, $P$-symmetric, $h$-isotropic, of scalar curvature, of constant curvature, of $p$-scalar curvature, of $s$-$ps$-curvature. The global definitions of these special Finsler manifolds are introduced. Various relationships between the different types of the considered special Finsler manifolds are found. Many local results, known in the literature, are proved globally and several new results are obtained. As a by-product, interesting identities and properties concerning the torsion tensor fields and the curvature tensor fields are deduced. Although our investigation is entirely global, we provide; for comparison reasons, an appendix presenting a local counterpart of our global approach and the local definitions of the special Finsler spaces considered.
The quadratic pion scalar radius, la r^2ra^pi_s, plays an important role for present precise determinations of pipi scattering. Recently, Yndurain, using an Omn`es representation of the null isospin(I) non-strange pion scalar form factor, obtains la
r^2ra^pi_s=0.75pm 0.07 fm^2. This value is larger than the one calculated by solving the corresponding Muskhelishvili-Omn`es equations, la r^2ra^pi_s=0.61pm 0.04 fm^2. A large discrepancy between both values, given the precision, then results. We reanalyze Yndurains method and show that by imposing continuity of the resulting pion scalar form factor under tiny changes in the input pipi phase shifts, a zero in the form factor for some S-wave I=0 T-matrices is then required. Once this is accounted for, the resulting value is la r^2ra_s^pi=0.65pm 0.05 fm^2. The main source of error in our determination is present experimental uncertainties in low energy S-wave I=0 pipi phase shifts. Another important contribution to our error is the not yet settled asymptotic behaviour of the phase of the scalar form factor from QCD.