ترغب بنشر مسار تعليمي؟ اضغط هنا

فلترة حسب
This paper considers the propagation of shallow-water solitary and nonlinear periodic waves over a gradual slope with bottom friction in the framework of a variable-coefficient Korteweg-de Vries equation. We use the Whitham averaging method, using a recent development of this theory for perturbed integrable equations. This general approach enables us not only to improve known results on the adiabatic evolution of isolated solitary waves and periodic wave trains in the presence of variable topography and bottom friction, modeled by the Chezy law, but also importantly, to study the effects of these factors on the propagation of undular bores, which are essentially unsteady in the system under consideration. In particular, it is shown that the combined action of variable topography and bottom friction generally imposes certain global restrictions on the undular bore propagation so that the evolution of the leading solitary wave can be substantially different from that of an isolated solitary wave with the same initial amplitude. This non-local effect is due to nonlinear wave interactions within the undular bore and can lead to an additional solitary wave amplitude growth, which cannot be predicted in the framework of the traditional adiabatic approach to the propagation of solitary waves in slowly varying media.
We present Lie group integrators for nonlinear stochastic differential equations with non-commutative vector fields whose solution evolves on a smooth finite dimensional manifold. Given a Lie group action that generates transport along the manifold, we pull back the stochastic flow on the manifold to the Lie group via the action, and subsequently pull back the flow to the corresponding Lie algebra via the exponential map. We construct an approximation to the stochastic flow in the Lie algebra via closed operations and then push back to the Lie group and then to the manifold, thus ensuring our approximation lies in the manifold. We call such schemes stochastic Munthe-Kaas methods after their deterministic counterparts. We also present stochastic Lie group integration schemes based on Castell--Gaines methods. These involve using an underlying ordinary differential integrator to approximate the flow generated by a truncated stochastic exponential Lie series. They become stochastic Lie group integrator schemes if we use Munthe-Kaas methods as the underlying ordinary differential integrator. Further, we show that some Castell--Gaines methods are uniformly more accurate than the corresponding stochastic Taylor schemes. Lastly we demonstrate our methods by simulating the dynamics of a free rigid body such as a satellite and an autonomous underwater vehicle both perturbed by two independent multiplicative stochastic noise processes.
We describe a new algorithm, the $(k,\\ell)$-pebble game with colors, and use\nit obtain a characterization of the family of $(k,\\ell)$-sparse graphs and\nalgorithmic solutions to a family of problems concerning tree decompositions of\ngraphs. Spe cial instances of sparse graphs appear in rigidity theory and have\nreceived increased attention in recent years. In particular, our colored\npebbles generalize and strengthen the previous results of Lee and Streinu and\ngive a new proof of the Tutte-Nash-Williams characterization of arboricity. We\nalso present a new decomposition that certifies sparsity based on the\n$(k,\\ell)$-pebble game with colors. Our work also exposes connections between\npebble game algorithms and previous sparse graph algorithms by Gabow, Gabow and\nWestermann and Hendrickson.\n
422 - Boris Rubin 2007
Intersection bodies represent a remarkable class of geometric objects associated with sections of star bodies and invoking Radon transforms, generalized cosine transforms, and the relevant Fourier analysis. The main focus of this article is interre lation between generalized cosine transforms of different kinds in the context of their application to investigation of a certain family of intersection bodies, which we call $lam$-intersection bodies. The latter include $k$-intersection bodies (in the sense of A. Koldobsky) and unit balls of finite-dimensional subspaces of $L_p$-spaces. In particular, we show that restrictions onto lower dimensional subspaces of the spherical Radon transforms and the generalized cosine transforms preserve their integral-geometric structure. We apply this result to the study of sections of $lam$-intersection bodies. New characterizations of this class of bodies are obtained and examples are given. We also review some known facts and give them new proofs.
509 - Osamu Fujino 2007
We treat Kollars injectivity theorem from the analytic (or differential geometric) viewpoint. More precisely, we give a curvature condition which implies Kollar type cohomology injectivity theorems. Our main theorem is formulated for a compact Kahler manifold, but the proof uses the space of harmonic forms on a Zariski open set with a suitable complete Kahler metric. We need neither covering tricks, desingularizations, nor Lerays spectral sequence.
We study the interplay of crystal field splitting and Hund coupling in a two-orbital model which captures the essential physics of systems with two electrons or holes in the e_g shell. We use single site dynamical mean field theory with a recently de veloped impurity solver which is able to access strong couplings and low temperatures. The fillings of the orbitals and the location of phase boundaries are computed as a function of Coulomb repulsion, exchange coupling and crystal field splitting. We find that the Hund coupling can drive the system into a novel Mott insulating phase with vanishing orbital susceptibility. Away from half-filling, the crystal field splitting can induce an orbital selective Mott state.
282 - Lester Ingber 2007
Real Options for Project Schedules (ROPS) has three recursive sampling/optimization shells. An outer Adaptive Simulated Annealing (ASA) optimization shell optimizes parameters of strategic Plans containing multiple Projects containing ordered Tasks. A middle shell samples probability distributions of durations of Tasks. An inner shell samples probability distributions of costs of Tasks. PATHTREE is used to develop options on schedules.. Algorithms used for Trading in Risk Dimensions (TRD) are applied to develop a relative risk analysis among projects.
561 - Dohoon Choi 2007
Recently, Bruinier and Ono classified cusp forms $f(z) := sum_{n=0}^{infty} a_f(n)q ^n in S_{lambda+1/2}(Gamma_0(N),chi)cap mathbb{Z}[[q]]$ that does not satisfy a certain distribution property for modulo odd primes $p$. In this paper, using Rankin-C ohen Bracket, we extend this result to modular forms of half integral weight for primes $p geq 5$. As applications of our main theorem we derive distribution properties, for modulo primes $pgeq5$, of traces of singular moduli and Hurwitz class number. We also study an analogue of Newmans conjecture for overpartitions.
506 - Afsar Abbas 2017
The Dark Energy problem is forcing us to re-examine our models and our understanding of relativity and space-time. Here a novel idea of Fundamental Forces is introduced. This allows us to perceive the General Theory of Relativity and Einsteins Equati on from a new pesrpective. In addition to providing us with an improved understanding of space and time, it will be shown how it leads to a resolution of the Dark Energy problem.
We analyze the possibility of probing non-standard neutrino interactions (NSI, for short) through the detection of neutrinos produced in a future galactic supernova (SN).We consider the effect of NSI on the neutrino propagation through the SN envelop e within a three-neutrino framework, paying special attention to the inclusion of NSI-induced resonant
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا