We construct a system of nonequilibrium entropy limiters for the lattice Boltzmann methods (LBM). These limiters erase spurious oscillations without blurring of shocks, and do not affect smooth solutions. In general, they do the same work for LBM as
flux limiters do for finite differences, finite volumes and finite elements methods, but for LBM the main idea behind the construction of nonequilibrium entropy limiter schemes is to transform a field of a scalar quantity - nonequilibrium entropy. There are two families of limiters: (i) based on restriction of nonequilibrium entropy (entropy trimming) and (ii) based on filtering of nonequilibrium entropy (entropy filtering). The physical properties of LBM provide some additional benefits: the control of entropy production and accurate estimate of introduced artificial dissipation are possible. The constructed limiters are tested on classical numerical examples: 1D athermal shock tubes with an initial density ratio 1:2 and the 2D lid-driven cavity for Reynolds numbers Re between 2000 and 7500 on a coarse 100*100 grid. All limiter constructions are applicable for both entropic and non-entropic quasiequilibria.
In this paper we consider the Hardy-Lorentz spaces $H^{p,q}(R^n)$, with $0<ple 1$, $0<qle infty$. We discuss the atomic decomposition of the elements in these spaces, their interpolation properties, and the behavior of singular integrals and other operators acting on them.
We employ granular hydrodynamics to investigate a paradigmatic problem of clustering of particles in a freely cooling dilute granular gas. We consider large-scale hydrodynamic motions where the viscosity and heat conduction can be neglected, and one
arrives at the equations of ideal gas dynamics with an additional term describing bulk energy losses due to inelastic collisions. We employ Lagrangian coordinates and derive a broad family of exact non-stationary analytical solutions that depend only on one spatial coordinate. These solutions exhibit a new type of singularity, where the gas density blows up in a finite time when starting from smooth initial conditions. The density blowups signal formation of close-packed clusters of particles. As the density blow-up time $t_c$ is approached, the maximum density exhibits a power law $sim (t_c-t)^{-2}$. The velocity gradient blows up as $sim - (t_c-t)^{-1}$ while the velocity itself remains continuous and develops a cusp (rather than a shock discontinuity) at the singularity. The gas temperature vanishes at the singularity, and the singularity follows the isobaric scenario: the gas pressure remains finite and approximately uniform in space and constant in time close to the singularity. An additional exact solution shows that the density blowup, of the same type, may coexist with an ordinary shock, at which the hydrodynamic fields are discontinuous but finite. We confirm stability of the exact solutions with respect to small one-dimensional perturbations by solving the ideal hydrodynamic equations numerically. Furthermore, numerical solutions show that the local features of the density blowup hold universally, independently of details of the initial and boundary conditions.
We show that the globular cluster mass function (GCMF) in the Milky Way depends on cluster half-mass density (rho_h) in the sense that the turnover mass M_TO increases with rho_h while the width of the GCMF decreases. We argue that this is the expect
ed signature of the slow erosion of a mass function that initially rose towards low masses, predominantly through cluster evaporation driven by internal two-body relaxation. We find excellent agreement between the observed GCMF -- including its dependence on internal density rho_h, central concentration c, and Galactocentric distance r_gc -- and a simple model in which the relaxation-driven mass-loss rates of clusters are approximated by -dM/dt = mu_ev ~ rho_h^{1/2}. In particular, we recover the well-known insensitivity of M_TO to r_gc. This feature does not derive from a literal ``universality of the GCMF turnover mass, but rather from a significant variation of M_TO with rho_h -- the expected outcome of relaxation-driven cluster disruption -- plus significant scatter in rho_h as a function of r_gc. Our conclusions are the same if the evaporation rates are assumed to depend instead on the mean volume or surface densities of clusters inside their tidal radii, as mu_ev ~ rho_t^{1/2} or mu_ev ~ Sigma_t^{3/4} -- alternative prescriptions that are physically motivated but involve cluster properties (rho_t and Sigma_t) that are not as well defined or as readily observable as rho_h. In all cases, the normalization of mu_ev required to fit the GCMF implies cluster lifetimes that are within the range of standard values (although falling towards the low end of this range). Our analysis does not depend on any assumptions or information about velocity anisotropy in the globular cluster system.
In this paper, we introduce the on-line Viterbi algorithm for decoding hidden Markov models (HMMs) in much smaller than linear space. Our analysis on two-state HMMs suggests that the expected maximum memory used to decode sequence of length $n$ with
$m$-state HMM can be as low as $Theta(mlog n)$, without a significant slow-down compared to the classical Viterbi algorithm. Classical Viterbi algorithm requires $O(mn)$ space, which is impractical for analysis of long DNA sequences (such as complete human genome chromosomes) and for continuous data streams. We also experimentally demonstrate the performance of the on-line Viterbi algorithm on a simple HMM for gene finding on both simulated and real DNA sequences.
In $XQM$, a quark can emit Goldstone bosons. The flavor symmetry breaking in the Goldstone boson emission process is used to intepret the nucleon flavor-spin structure. In this paper, we study the inner structure of constituent quarks implied in $XQM
$ caused by the Goldstone boson emission process in nucleon. From a simplified model Hamiltonian derived from $XQM$, the intrinsic wave functions of constituent quarks are determined. Then the obtained transition probabilities of the emission of Goldstone boson from a quark can give a reasonable interpretation to the flavor symmetry breaking in nucleon flavor-spin structure.
The Dark Energy problem is forcing us to re-examine our models and our understanding of relativity and space-time. Here a novel idea of Fundamental Forces is introduced. This allows us to perceive the General Theory of Relativity and Einsteins Equati
on from a new pesrpective. In addition to providing us with an improved understanding of space and time, it will be shown how it leads to a resolution of the Dark Energy problem.
We study the two-particle wave function of paired atoms in a Fermi gas with tunable interaction strengths controlled by Feshbach resonance. The Cooper pair wave function is examined for its bosonic characters, which is quantified by the correction of
Bose enhancement factor associated with the creation and annihilation composite particle operators. An example is given for a three-dimensional uniform gas. Two definitions of Cooper pair wave function are examined. One of which is chosen to reflect the off-diagonal long range order (ODLRO). Another one corresponds to a pair projection of a BCS state. On the side with negative scattering length, we found that paired atoms described by ODLRO are more bosonic than the pair projected definition. It is also found that at $(k_F a)^{-1} ge 1$, both definitions give similar results, where more than 90% of the atoms occupy the corresponding molecular condensates.
The goal of this paper is to construct invariant dynamical objects for a (not necessarily invertible) smooth self map of a compact manifold. We prove a result that takes advantage of differences in rates of expansion in the terms of a sheaf cohomolog
ical long exact sequence to create unique lifts of finite dimensional invariant subspaces of one term of the sequence to invariant subspaces of the preceding term. This allows us to take invariant cohomological classes and under the right circumstances construct unique currents of a given type, including unique measures of a given type, that represent those classes and are invariant under pullback. A dynamically interesting self map may have a plethora of invariant measures, so the uniquess of the constructed currents is important. It means that if local growth is not too big compared to the growth rate of the cohomological class then the expanding cohomological class gives sufficient marching orders to the system to prohibit the formation of any other such invariant current of the same type (say from some local dynamical subsystem). Because we use subsheaves of the sheaf of currents we give conditions under which a subsheaf will have the same cohomology as the sheaf containing it. Using a smoothing argument this allows us to show that the sheaf cohomology of the currents under consideration can be canonically identified with the deRham cohomology groups. Our main theorem can be applied in both the smooth and holomorphic setting.
Zero-divisors (ZDs) derived by Cayley-Dickson Process (CDP) from N-dimensional hypercomplex numbers (N a power of 2, at least 4) can represent singularities and, as N approaches infinite, fractals -- and thereby,scale-free networks. Any integer great
er than 8 and not a power of 2 generates a meta-fractal or Sky when it is interpreted as the strut constant (S) of an ensemble of octahedral vertex figures called Box-Kites (the fundamental building blocks of ZDs). Remarkably simple bit-manipulation rules or recipes provide tools for transforming one fractal genus into others within the context of Wolframs Class 4 complexity.