Statistical modeling of experimental physical laws is based on the probability density function of measured variables. It is expressed by experimental data via a kernel estimator. The kernel is determined objectively by the scattering of data during
calibration of experimental setup. A physical law, which relates measured variables, is optimally extracted from experimental data by the conditional average estimator. It is derived directly from the kernel estimator and corresponds to a general nonparametric regression. The proposed method is demonstrated by the modeling of a return map of noisy chaotic data. In this example, the nonparametric regression is used to predict a future value of chaotic time series from the present one. The mean predictor error is used in the definition of predictor quality, while the redundancy is expressed by the mean square distance between data points. Both statistics are used in a new definition of predictor cost function. From the minimum of the predictor cost function, a proper number of data in the model is estimated.

113 -
Nceba Mhlahlo
, David H. Buckley
, Vikram S. Dhillon
, Steven B. Potter
, n Brian Warner
, Patric A. Woudt
2007

Results from spectroscopic observations of the Intermediate Polar (IP) EX Hya in quiescence during 1991 and 2001 are presented. Spin-modulated radial velocities consistent with an outer disc origin were detected for the first time in an IP. The spin
pulsation was modulated with velocities near ~500-600 km/s. These velocities are consistent with those of material circulating at the outer edge of the accretion disc, suggesting corotation of the accretion curtain with material near the Roche lobe radius. Furthermore, spin Doppler tomograms have revealed evidence of the accretion curtain emission extending from velocities of ~500 km/s to ~1000 km/s. These findings have confirmed the theoretical model predictions of King & Wynn (1999), Belle et al. (2002) and Norton et al. (2004) for EX Hya, which predict large accretion curtains that extend to a distance close to the Roche lobe radius in this system. Evidence for overflow stream of material falling onto the magnetosphere was observed, confirming the result of Belle et al. (2005) that disc overflow in EX Hya is present during quiescence as well as outburst. It appears that the hbeta and hgamma spin radial velocities originated from the rotation of the funnel at the outer disc edge, while those of halpha were produced due to the flow of material along the field lines far from the white dwarf (narrow component) and close to the white dwarf (broad-base component), in agreement with the accretion curtain model.

26 -
Bozhidar Z. Iliev (Institute for Nuclear Research
, Nuclear Energy
, n Bulgarian Academy of Sciences
, Sofia
, Bulgaria)
2007

Possible (algebraic) commutation relations in the Lagrangian quantum theory of free (scalar, spinor and vector) fields are considered from mathematical view-point. As sources of these relations are employed the Heisenberg equations/relations for the
dynamical variables and a specific condition for uniqueness of the operators of the dynamical variables (with respect to some class of Lagrangians). The paracommutation relations or some their generalizations are pointed as the most general ones that entail the validity of all Heisenberg equations. The simultaneous fulfillment of the Heisenberg equations and the uniqueness requirement turn to be impossible. This problem is solved via a redefinition of the dynamical variables, similar to the normal ordering procedure and containing it as a special case. That implies corresponding changes in the admissible commutation relations. The introduction of the concept of the vacuum makes narrow the class of the possible commutation relations; in particular, the mentioned redefinition of the dynamical variables is reduced to normal ordering. As a last restriction on that class is imposed the requirement for existing of an effective procedure for calculating vacuum mean values. The standard bilinear commutation relations are pointed as the only known ones that satisfy all of the mentioned conditions and do not contradict to the existing data.

In this manuscript we investigate the capabilities of the Discrete Dipole Approximation (DDA) to simulate scattering from particles that are much larger than the wavelength of the incident light, and describe an optimized publicly available DDA compu
ter program that processes the large number of dipoles required for such simulations. Numerical simulations of light scattering by spheres with size parameters x up to 160 and 40 for refractive index m=1.05 and 2 respectively are presented and compared with exact results of the Mie theory. Errors of both integral and angle-resolved scattering quantities generally increase with m and show no systematic dependence on x. Computational times increase steeply with both x and m, reaching values of more than 2 weeks on a cluster of 64 processors. The main distinctive feature of the computer program is the ability to parallelize a single DDA simulation over a cluster of computers, which allows it to simulate light scattering by very large particles, like the ones that are considered in this manuscript. Current limitations and possible ways for improvement are discussed.

We get asymptotics for the volume of large balls in an arbitrary locally compact group G with polynomial growth. This is done via a study of the geometry of G and a generalization of P. Pansus thesis. In particular, we show that any such G is weakly
commensurable to some simply connected solvable Lie group S, the Lie shadow of G. We also show that large balls in G have an asymptotic shape, i.e. after a suitable renormalization, they converge to a limiting compact set which can be interpreted geometrically. We then discuss the speed of convergence, treat some examples and give an application to ergodic theory. We also answer a question of Burago about left invariant metrics and recover some results of Stoll on the irrationality of growth series of nilpotent groups.

The pure spinor formulation of the ten-dimensional superstring leads to manifestly supersymmetric loop amplitudes, expressed as integrals in pure spinor superspace. This paper explores different methods to evaluate these integrals and then uses them
to calculate the kinematic factors of the one-loop and two-loop massless four-point amplitudes involving two and four Ramond states.

We discussed quantum deformations of D=4 Lorentz and Poincare algebras. In the case of Poincare algebra it is shown that almost all classical r-matrices of S. Zakrzewski classification correspond to twisted deformations of Abelian and Jordanian types
. A part of twists corresponding to the r-matrices of Zakrzewski classification are given in explicit form.

155 -
Alexander Stroeer
, John Veitch
, Christian Roever
, Ed Bloomer
, Jamesn Clark
, Nelson Christensen
, Martin Hendry
, Chris Messenger
, Renate Meyer
, n Matthew Pitkin
, Jennifer Toher
, Richard Umstaetter
, Alberto Vecchio andn Graham Woan
2007

We report on the analysis of selected single source data sets from the first round of the Mock LISA Data Challenges (MLDC) for white dwarf binaries. We implemented an end-to-end pipeline consisting of a grid-based coherent pre-processing unit for sig
nal detection, and an automatic Markov Chain Monte Carlo post-processing unit for signal evaluation. We demonstrate that signal detection with our coherent approach is secure and accurate, and is increased in accuracy and supplemented with additional information on the signal parameters by our Markov Chain Monte Carlo approach. We also demonstrate that the Markov Chain Monte Carlo routine is additionally able to determine accurately the noise level in the frequency window of interest.

The Dark Energy problem is forcing us to re-examine our models and our understanding of relativity and space-time. Here a novel idea of Fundamental Forces is introduced. This allows us to perceive the General Theory of Relativity and Einsteins Equati
on from a new pesrpective. In addition to providing us with an improved understanding of space and time, it will be shown how it leads to a resolution of the Dark Energy problem.

We analyze the possibility of probing non-standard neutrino interactions (NSI, for short) through the detection of neutrinos produced in a future galactic supernova (SN).We consider the effect of NSI on the neutrino propagation through the SN envelop
e within a three-neutrino framework, paying special attention to the inclusion of NSI-induced resonant