ترغب بنشر مسار تعليمي؟ اضغط هنا

فلترة حسب
We propose an extrapolation technique that allows accuracy improvement of the discrete dipole approximation computations. The performance of this technique was studied empirically based on extensive simulations for 5 test cases using many different d iscretizations. The quality of the extrapolation improves with refining discretization reaching extraordinary performance especially for cubically shaped particles. A two order of magnitude decrease of error was demonstrated. We also propose estimates of the extrapolation error, which were proven to be reliable. Finally we propose a simple method to directly separate shape and discretization errors and illustrated this for one test case.
Spatiotemporal pattern formation in a product-activated enzymic reaction at high enzyme concentrations is investigated. Stochastic simulations show that catalytic turnover cycles of individual enzymes can become coherent and that complex wave pattern s of molecular synchronization can develop. The analysis based on the mean-field approximation indicates that the observed patterns result from the presence of Hopf and wave bifurcations in the considered system.
153 - A. I. Molev 2007
We introduce a family of rings of symmetric functions depending on an infinite sequence of parameters. A distinguished basis of such a ring is comprised by analogues of the Schur functions. The corresponding structure coefficients are polynomials in the parameters which we call the Littlewood-Richardson polynomials. We give a combinatorial rule for their calculation by modifying an earlier result of B. Sagan and the author. The new rule provides a formula for these polynomials which is manifestly positive in the sense of W. Graham. We apply this formula for the calculation of the product of equivariant Schubert classes on Grassmannians which implies a stability property of the structure coefficients. The first manifestly positive formula for such an expansion was given by A. Knutson and T. Tao by using combinatorics of puzzles while the stability property was not apparent from that formula. We also use the Littlewood-Richardson polynomials to describe the multiplication rule in the algebra of the Casimir elements for the general linear Lie algebra in the basis of the quantum immanants constructed by A. Okounkov and G. Olshanski.
217 - T. Kosel , I. Grabec 2007
Part I describes an intelligent acoustic emission locator, while Part II discusses blind source separation, time delay estimation and location of two continuous acoustic emission sources. Acoustic emission (AE) analysis is used for characterization and location of developing defects in materials. AE sources often generate a mixture of various statistically independent signals. A difficult problem of AE analysis is separation and characterization of signal components when the signals from various sources and the mode of mixing are unknown. Recently, blind source separation (BSS) by independent component analysis (ICA) has been used to solve these problems. The purpose of this paper is to demonstrate the applicability of ICA to locate two independent simultaneously active acoustic emission sources on an aluminum band specimen. The method is promising for non-destructive testing of aircraft frame structures by acoustic emission analysis.
We investigate the Coulomb excitation of low-lying states of unstable nuclei in intermediate energy collisions ($E_{lab}sim10-500$ MeV/nucleon). It is shown that the cross sections for the $E1$ and $E2$ transitions are larger at lower energies, much less than 10 MeV/nucleon. Retardation effects and Coulomb distortion are found to be both relevant for energies as low as 10 MeV/nucleon and as high as 500 MeV/nucleon. Implications for studies at radioactive beam facilities are discussed.
157 - Vasily Ogryzko 2007
This is a supplement to the paper arXiv:q-bio/0701050, containing the text of correspondence sent to Nature in 1990.
In this work, we evaluate the lifetimes of the doubly charmed baryons $Xi_{cc}^{+}$, $Xi_{cc}^{++}$ and $Omega_{cc}^{+}$. We carefully calculate the non-spectator contributions at the quark level where the Cabibbo-suppressed diagrams are also include d. The hadronic matrix elements are evaluated in the simple non-relativistic harmonic oscillator model. Our numerical results are generally consistent with that obtained by other authors who used the diquark model. However, all the theoretical predictions on the lifetimes are one order larger than the upper limit set by the recent SELEX measurement. This discrepancy would be clarified by the future experiment, if more accurate experiment still confirms the value of the SELEX collaboration, there must be some unknown mechanism to be explored.
120 - V. M. Biryukov 2007
We show that crystal can trap a broad (x, x, y, y, E) distribution of particles and channel it preserved with a high precision. This sampled-and-hold distribution can be steered by a bent crystal for analysis downstream. In simulations for the 7 TeV Large Hadron Collider, a crystal adapted to the accelerator lattice traps 90% of diffractively scattered protons emerging from the interaction point with a divergence 100 times the critical angle. We set the criterion for crystal adaptation improving efficiency ~100-fold. Proton angles are preserved in crystal transmission with accuracy down to 0.1 microrad. This makes feasible a crystal application for measuring very forward protons at the LHC.
We present a critical review about the study of linear perturbations of matched spacetimes including gauge problems. We analyse the freedom introduced in the perturbed matching by the presence of background symmetries and revisit the particular case of spherically symmetry in n-dimensions. This analysis includes settings with boundary layers such as brane world models and shell cosmologies.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا