The goal of this paper is to construct invariant dynamical objects for a (not necessarily invertible) smooth self map of a compact manifold. We prove a result that takes advantage of differences in rates of expansion in the terms of a sheaf cohomolog
ical long exact sequence to create unique lifts of finite dimensional invariant subspaces of one term of the sequence to invariant subspaces of the preceding term. This allows us to take invariant cohomological classes and under the right circumstances construct unique currents of a given type, including unique measures of a given type, that represent those classes and are invariant under pullback. A dynamically interesting self map may have a plethora of invariant measures, so the uniquess of the constructed currents is important. It means that if local growth is not too big compared to the growth rate of the cohomological class then the expanding cohomological class gives sufficient marching orders to the system to prohibit the formation of any other such invariant current of the same type (say from some local dynamical subsystem). Because we use subsheaves of the sheaf of currents we give conditions under which a subsheaf will have the same cohomology as the sheaf containing it. Using a smoothing argument this allows us to show that the sheaf cohomology of the currents under consideration can be canonically identified with the deRham cohomology groups. Our main theorem can be applied in both the smooth and holomorphic setting.
Partial cubes are isometric subgraphs of hypercubes. Structures on a graph defined by means of semicubes, and Djokovi{c}s and Winklers relations play an important role in the theory of partial cubes. These structures are employed in the paper to char
acterize bipartite graphs and partial cubes of arbitrary dimension. New characterizations are established and new proofs of some known results are given. The operations of Cartesian product and pasting, and expansion and contraction processes are utilized in the paper to construct new partial cubes from old ones. In particular, the isometric and lattice dimensions of finite partial cubes obtained by means of these operations are calculated.
No abstract given; compares pairs of languages from World Atlas of Language Structures.
We define nonselfadjoint operator algebras with generators $L_{e_1},..., L_{e_n}, L_{f_1},...,L_{f_m}$ subject to the unitary commutation relations of the form [ L_{e_i}L_{f_j} = sum_{k,l} u_{i,j,k,l} L_{f_l}L_{e_k}] where $u= (u_{i,j,k,l})$ is an $n
m times nm$ unitary matrix. These algebras, which generalise the analytic Toeplitz algebras of rank 2 graphs with a single vertex, are classified up to isometric isomorphism in terms of the matrix $u$.
The shape of the hadronic form factor f+(q2) in the decay D0 --> K- e+ nue has been measured in a model independent analysis and compared with theoretical calculations. We use 75 fb(-1) of data recorded by the BABAR detector at the PEPII electron-pos
itron collider. The corresponding decay branching fraction, relative to the decay D0 --> K- pi+, has also been measured to be RD = BR(D0 --> K- e+ nue)/BR(D0 --> K- pi+) = 0.927 +/- 0.007 +/- 0.012. From these results, and using the present world average value for BR(D0 --> K- pi+), the normalization of the form factor at q2=0 is determined to be f+(0)=0.727 +/- 0.007 +/- 0.005 +/- 0.007 where the uncertainties are statistical, systematic, and from external inputs, respectively.
In this work, we evaluate the lifetimes of the doubly charmed baryons $Xi_{cc}^{+}$, $Xi_{cc}^{++}$ and $Omega_{cc}^{+}$. We carefully calculate the non-spectator contributions at the quark level where the Cabibbo-suppressed diagrams are also include
d. The hadronic matrix elements are evaluated in the simple non-relativistic harmonic oscillator model. Our numerical results are generally consistent with that obtained by other authors who used the diquark model. However, all the theoretical predictions on the lifetimes are one order larger than the upper limit set by the recent SELEX measurement. This discrepancy would be clarified by the future experiment, if more accurate experiment still confirms the value of the SELEX collaboration, there must be some unknown mechanism to be explored.
Potassium intercalation in graphite is investigated by first-principles theory. The bonding in the potassium-graphite compound is reasonably well accounted for by traditional semilocal density functional theory (DFT) calculations. However, to investi
gate the intercalate formation energy from pure potassium atoms and graphite requires use of a description of the graphite interlayer binding and thus a consistent account of the nonlocal dispersive interactions. This is included seamlessly with ordinary DFT by a van der Waals density functional (vdW-DF) approach [Phys. Rev. Lett. 92, 246401 (2004)]. The use of the vdW-DF is found to stabilize the graphite crystal, with crystal parameters in fair agreement with experiments. For graphite and potassium-intercalated graphite structural parameters such as binding separation, layer binding energy, formation energy, and bulk modulus are reported. Also the adsorption and sub-surface potassium absorption energies are reported. The vdW-DF description, compared with the traditional semilocal approach, is found to weakly soften the elastic response.
Statistical modeling of experimental physical laws is based on the probability density function of measured variables. It is expressed by experimental data via a kernel estimator. The kernel is determined objectively by the scattering of data during
calibration of experimental setup. A physical law, which relates measured variables, is optimally extracted from experimental data by the conditional average estimator. It is derived directly from the kernel estimator and corresponds to a general nonparametric regression. The proposed method is demonstrated by the modeling of a return map of noisy chaotic data. In this example, the nonparametric regression is used to predict a future value of chaotic time series from the present one. The mean predictor error is used in the definition of predictor quality, while the redundancy is expressed by the mean square distance between data points. Both statistics are used in a new definition of predictor cost function. From the minimum of the predictor cost function, a proper number of data in the model is estimated.
This paper considers the propagation of shallow-water solitary and nonlinear periodic waves over a gradual slope with bottom friction in the framework of a variable-coefficient Korteweg-de Vries equation. We use the Whitham averaging method, using a
recent development of this theory for perturbed integrable equations. This general approach enables us not only to improve known results on the adiabatic evolution of isolated solitary waves and periodic wave trains in the presence of variable topography and bottom friction, modeled by the Chezy law, but also importantly, to study the effects of these factors on the propagation of undular bores, which are essentially unsteady in the system under consideration. In particular, it is shown that the combined action of variable topography and bottom friction generally imposes certain global restrictions on the undular bore propagation so that the evolution of the leading solitary wave can be substantially different from that of an isolated solitary wave with the same initial amplitude. This non-local effect is due to nonlinear wave interactions within the undular bore and can lead to an additional solitary wave amplitude growth, which cannot be predicted in the framework of the traditional adiabatic approach to the propagation of solitary waves in slowly varying media.
We study a simple model of a nematic liquid crystal made of parallel ellipsoidal particles interacting via a repulsive Gaussian law. After identifying the relevant solid phases of the system through a careful zero-temperature scrutiny of as many as e
leven candidate crystal structures, we determine the melting temperature for various pressure values, also with the help of exact free energy calculations. Among the prominent features of this model are pressure-driven reentrant melting and the stabilization of a columnar phase for intermediate temperatures.