ترغب بنشر مسار تعليمي؟ اضغط هنا

فلترة حسب
479 - Y. H. Pong , C. K. Law 2007
We study the two-particle wave function of paired atoms in a Fermi gas with tunable interaction strengths controlled by Feshbach resonance. The Cooper pair wave function is examined for its bosonic characters, which is quantified by the correction of Bose enhancement factor associated with the creation and annihilation composite particle operators. An example is given for a three-dimensional uniform gas. Two definitions of Cooper pair wave function are examined. One of which is chosen to reflect the off-diagonal long range order (ODLRO). Another one corresponds to a pair projection of a BCS state. On the side with negative scattering length, we found that paired atoms described by ODLRO are more bosonic than the pair projected definition. It is also found that at $(k_F a)^{-1} ge 1$, both definitions give similar results, where more than 90% of the atoms occupy the corresponding molecular condensates.
570 - Stephen C. Power 2007
We define nonselfadjoint operator algebras with generators $L_{e_1},..., L_{e_n}, L_{f_1},...,L_{f_m}$ subject to the unitary commutation relations of the form [ L_{e_i}L_{f_j} = sum_{k,l} u_{i,j,k,l} L_{f_l}L_{e_k}] where $u= (u_{i,j,k,l})$ is an $n m times nm$ unitary matrix. These algebras, which generalise the analytic Toeplitz algebras of rank 2 graphs with a single vertex, are classified up to isometric isomorphism in terms of the matrix $u$.
The fractional Aharonov-Bohm oscillation (FABO) of narrow quantum rings with two electrons has been studied and has been explained in an analytical way, the evolution of the period and amplitudes against the magnetic field can be exactly described. F urthermore, the dipole transition of the ground state was found to have essentially two frequencies, their difference appears as an oscillation matching the oscillation of the persistent current exactly. A number of equalities relating the observables and dynamical parameters have been found.
We describe a new algorithm, the $(k,\\ell)$-pebble game with colors, and use\nit obtain a characterization of the family of $(k,\\ell)$-sparse graphs and\nalgorithmic solutions to a family of problems concerning tree decompositions of\ngraphs. Spe cial instances of sparse graphs appear in rigidity theory and have\nreceived increased attention in recent years. In particular, our colored\npebbles generalize and strengthen the previous results of Lee and Streinu and\ngive a new proof of the Tutte-Nash-Williams characterization of arboricity. We\nalso present a new decomposition that certifies sparsity based on the\n$(k,\\ell)$-pebble game with colors. Our work also exposes connections between\npebble game algorithms and previous sparse graph algorithms by Gabow, Gabow and\nWestermann and Hendrickson.\n
349 - Branko J. Malesevic 2007
In the article [Petojevic 2006], A. Petojevi c verified useful properties of the $K_{i}(z)$ functions which generalize Kurepas [Kurepa 1971] left factorial function. In this note, we present simplified proofs of two of these results and we answer the open question stated in [Petojevic 2006]. Finally, we discuss the differential transcendency of the $K_{i}(z)$ functions.
We performed a rigorous theoretical convergence analysis of the discrete dipole approximation (DDA). We prove that errors in any measured quantity are bounded by a sum of a linear and quadratic term in the size of a dipole d, when the latter is in th e range of DDA applicability. Moreover, the linear term is significantly smaller for cubically than for non-cubically shaped scatterers. Therefore, for small d errors for cubically shaped particles are much smaller than for non-cubically shaped. The relative importance of the linear term decreases with increasing size, hence convergence of DDA for large enough scatterers is quadratic in the common range of d. Extensive numerical simulations were carried out for a wide range of d. Finally we discuss a number of new developments in DDA and their consequences for convergence.
378 - T. Kosel , I. Grabec 2007
The intelligent acoustic emission locator is described in Part I, while Part II discusses blind source separation, time delay estimation and location of two simultaneously active continuous acoustic emission sources. The location of acoustic emissi on on complicated aircraft frame structures is a difficult problem of non-destructive testing. This article describes an intelligent acoustic emission source locator. The intelligent locator comprises a sensor antenna and a general regression neural network, which solves the location problem based on learning from examples. Locator performance was tested on different test specimens. Tests have shown that the accuracy of location depends on sound velocity and attenuation in the specimen, the dimensions of the tested area, and the properties of stored data. The location accuracy achieved by the intelligent locator is comparable to that obtained by the conventional triangulation method, while the applicability of the intelligent locator is more general since analysis of sonic ray paths is avoided. This is a promising method for non-destructive testing of aircraft frame structures by the acoustic emission method.
We employ granular hydrodynamics to investigate a paradigmatic problem of clustering of particles in a freely cooling dilute granular gas. We consider large-scale hydrodynamic motions where the viscosity and heat conduction can be neglected, and one arrives at the equations of ideal gas dynamics with an additional term describing bulk energy losses due to inelastic collisions. We employ Lagrangian coordinates and derive a broad family of exact non-stationary analytical solutions that depend only on one spatial coordinate. These solutions exhibit a new type of singularity, where the gas density blows up in a finite time when starting from smooth initial conditions. The density blowups signal formation of close-packed clusters of particles. As the density blow-up time $t_c$ is approached, the maximum density exhibits a power law $sim (t_c-t)^{-2}$. The velocity gradient blows up as $sim - (t_c-t)^{-1}$ while the velocity itself remains continuous and develops a cusp (rather than a shock discontinuity) at the singularity. The gas temperature vanishes at the singularity, and the singularity follows the isobaric scenario: the gas pressure remains finite and approximately uniform in space and constant in time close to the singularity. An additional exact solution shows that the density blowup, of the same type, may coexist with an ordinary shock, at which the hydrodynamic fields are discontinuous but finite. We confirm stability of the exact solutions with respect to small one-dimensional perturbations by solving the ideal hydrodynamic equations numerically. Furthermore, numerical solutions show that the local features of the density blowup hold universally, independently of details of the initial and boundary conditions.
We present recent advances in understanding of the ground and excited states of the electron-phonon coupled systems obtained by novel methods of Diagrammatic Monte Carlo and Stochastic Optimization, which enable the approximation-free calculation of Matsubara Green function in imaginary times and perform unbiased analytic continuation to real frequencies. We present exact numeric results on the ground state properties, Lehmann spectral function and optical conductivity of different strongly correlated systems: Frohlich polaron, Rashba-Pekar exciton-polaron, pseudo Jahn-Teller polaron, exciton, and interacting with phonons hole in the t-J model.
We describe a peculiar fine structure acquired by the in-plane optical phonon at the Gamma-point in graphene when it is brought into resonance with one of the inter-Landau-level transitions in this material. The effect is most pronounced when this la ttice mode (associated with the G-band in graphene Raman spectrum) is in resonance with inter-Landau-level transitions 0 -> (+,1) and (-,1) -> 0, at a magnetic field B_0 ~ 30 T. It can be used to measure the strength of the electron-phonon coupling directly, and its filling-factor dependence can be used experimentally to detect circularly polarized lattice modes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا