Do you want to publish a course? Click here

A Study of Prediction Methods by Using Seasonal Time Series

دراسة طرائق التنبؤ باستخدام المتسلسلات الزمنية الموسمية

2474   5   66   0 ( 0 )
 Publication date 2017
and research's language is العربية
 Created by Omar Bitar




Ask ChatGPT about the research

We discussed in this work some predictive methods for time series and it is decomposing time series to its component (trend, Seasonality, cycle, random), Exponential smoothing, ARIMA, then we discussed some combining methods, then we formed a new combine for predict time series which depends on combining exponential smoothing and ARIMA using weighted average with MAPE weights, and applied all methods above on three seasonal time series , first hourly temperature in Aleppo in august 2011 ,second monthly milk production peer cow in Australia from Jan 1962 to Dec 1975,third quartly electricity production in Australia from Mar 1956 to Sep 1994, and compared the results which approved that the suggested method is the best.


Artificial intelligence review:
Research summary
تتناول هذه الأطروحة دراسة طرق التنبؤ باستخدام المتسلسلات الزمنية الموسمية. يتم تحليل المتسلسلات الزمنية إلى مكوناتها الأساسية مثل الاتجاه العام، الموسمية، الدورية، والعشوائية. كما يتم استعراض طرق التمهيد الأسي ونماذج بوكس-جنكينز (ARIMA) لتحليل المتسلسلات الزمنية. تقترح الأطروحة طريقة جديدة للتنبؤ تعتمد على دمج طريقة التمهيد الأسي مع نموذج بوكس-جنكينز باستخدام المتوسط الموزون بمعيار متوسط الأخطاء المطلق النسبي (MAPE). تم تطبيق هذه الطرق على ثلاث متسلسلات زمنية موسمية: درجات الحرارة في حلب بشكل ساعي، إنتاج الحليب في أستراليا بشكل شهري، وإنتاج الكهرباء في أستراليا بشكل فصلي. أظهرت النتائج أن الطريقة المقترحة هي الأفضل للتنبؤ بهذه المتسلسلات.
Critical review
تعتبر هذه الأطروحة إضافة قيمة لمجال تحليل المتسلسلات الزمنية الموسمية، حيث تقدم طريقة جديدة تجمع بين طريقتين معروفتين لتحليل المتسلسلات الزمنية. ومع ذلك، يمكن توجيه بعض الملاحظات النقدية لتحسين العمل. أولاً، كان من الممكن توسيع نطاق الدراسة لتشمل متسلسلات زمنية من مجالات أخرى غير المناخ والإنتاج الزراعي والصناعي، مما يعزز من عمومية النتائج. ثانياً، قد يكون من المفيد استخدام معايير أخرى لتقييم دقة التنبؤ مثل MASE أو RMSE بجانب MAPE. أخيراً، يمكن تحسين الأطروحة بإضافة دراسات حالة إضافية لتأكيد فعالية الطريقة المقترحة في ظروف مختلفة.
Questions related to the research
  1. ما هي الطريقة الجديدة المقترحة في الأطروحة للتنبؤ بالمتسلسلات الزمنية الموسمية؟

    الطريقة الجديدة المقترحة تعتمد على دمج طريقة التمهيد الأسي مع نموذج بوكس-جنكينز باستخدام المتوسط الموزون بمعيار متوسط الأخطاء المطلق النسبي (MAPE).

  2. ما هي المتسلسلات الزمنية التي تم تطبيق الدراسة عليها؟

    تم تطبيق الدراسة على ثلاث متسلسلات زمنية موسمية: درجات الحرارة في حلب بشكل ساعي، إنتاج الحليب في أستراليا بشكل شهري، وإنتاج الكهرباء في أستراليا بشكل فصلي.

  3. ما هي المكونات الأساسية التي يتم تحليل المتسلسلات الزمنية إليها؟

    يتم تحليل المتسلسلات الزمنية إلى مكوناتها الأساسية مثل الاتجاه العام، الموسمية، الدورية، والعشوائية.

  4. ما هي الطرق الأخرى التي تم استعراضها في الأطروحة لتحليل المتسلسلات الزمنية؟

    تم استعراض طرق التمهيد الأسي ونماذج بوكس-جنكينز (ARIMA) لتحليل المتسلسلات الزمنية.


References used
Hyndman R.; Kandhakar Y., 2008- Automatic Time Series Forecasting: the Forecast Package for R. Journal of Statistical Software, 26(3), 1-22.
rate research

Read More

حظيت نمذجة وتوقع السلاسل الزمنية بأهمية كبيرة في العديد من المجالات التطبيقية كالتنبؤ بالطقس وأسعار العملات ومعدلات استهلاك الوقود والكهرباء، إن توقع السلاسل الزمنية من شأنه أن يزود المنظمات والشركات بالمعلومات الضرورية لاتخاذ القرارات الهامة، وبسبب أهمية هذا المجال من الناحية التطبيقية فإن الكثير من الأعمال البحثية التي جرت ضمنه خلال السنوات الماضية، إضافةً إلى العدد الكبير من النماذج والخوارزميات التي تم اقتراحها في أدب البحث العلمي والتي كان هدفها تحسين كل من الدقة والكفاءة في نمذجة وتوقع السلاسل الزمنية.
The study aims at comparing ARIMA models and the exponential smoothing method in forecasting. This study also highlights the special and basic concepts of ARIMA model and the exponential smoothing method. The comparison focuses on the ability of both methods to forecast the time series with a narrow range of one point to another and the time series with a long range of one point to another, and also on the different lengths of the forecasting periods. Currency exchange rates of Shekel to American dollar were used to make this comparison in the period between 25/1/2010 to 22/10/2016. In addition, weekly gold prices were considered in the period between 10/1/2010 to 23/10/2016. RMSE standard was used in order to compare between both methods. In this study, the researcher came up with the conclusion that ARIMA models give a better forecasting for the time series with a long range of one point to another and for long term forecasting, but cannot produce a better forecasting for time series with a narrow range of one point to another as in currency exchange prices. On the contrary, exponential smoothing method can give better forecasting for Exchange Rates that has a narrow range of one point to another for its time series, while it cannot give better forecasting for long term forecasting periods
The study and design of water dams depend essential on prediction of water volumes or future predicted in rivers, by using the time series analysis of the historical measurements. The research aims to make statistical study of monthly water volume s incoming in AL-Aroos River in Syrian coastal and future prediction of these volumes. And the Box-Jenkins models is adopt to analysis the time series data, because of its high accuracy. We attend the monthly water volumes for 15 years. And after doing the wanted tests on model residuals we found that the best model to represent the data is SARIMA(0,1,2) (1,2,1)12 , and after dividing the data to 14 years to build the model and one year to test it , and depending on the smallest of weighted mean of criteria RMSE, MAP, MAE,. The best predicted model is SARIMA (1,1,0) (0,1,1)12 and the model give the nearest predicted of measured data actually.
The study and design of water-intakes on springs is based on the analysis of time series of historical measurements to achieve prediction of incoming water volumes or future expected. The research aims to model the monthly water flows of AL-SIN Sp ring in Syrian Coast and future expectations of these flows, by adopting the Box-Jenkins models to analyze the time series data, due to its reliable accuracy. Monthly water flows, thus, monthly volumes, for 101 month (from June 2008 to October 2016) were processed. Performing the stability of the time series on variance and median and non-seasonality and making the wanted tests on model residuals, we found that the best model to represent the data is SARIMA(2,0,1) (2,1,0)12 , and after dividing the data into 81 month to build the model and 20 month to test it. Depending on the smallest of weighted mean of criteria RMSE, MAP, MAE,. The best predicted model was SARIMA (3,1,0) (1,1,0)12 and the model gave the nearest predicted values to actually measured data in spring.
The four components of temperature (max., min.) phenomena, seasonal(S), Trend(T), cyclical(C), and random (I) for Tartous city have been studied. Four different methods (Average percentages method, Percentage of the general trend method, The ratio of the moving average method, Link Relative method) are used to deduct the (S) components and seasonal index for each method is determined. The statistical inferences pointed that the Average percentages method can be used in the prediction of temperature. for the year 2003 depending on a historical record (1957- 2002). The result of this deduction showed that the temperature is a cyclical phenomena. The known statistical test like mean, Standard deviation and cumulative probability have been done which showed a good correlation between the predicted and historical data.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا