Do you want to publish a course? Click here

Time Series Forecasting

التنبؤ في السلاسل الزمنية

3491   6   136   0 ( 0 )
 Publication date 2018
and research's language is العربية
 Created by FERAS K




Ask ChatGPT about the research

No English abstract


Artificial intelligence review:
Research summary
يتناول هذا البحث موضوع التنبؤ بالسلاسل الزمنية، وهو مجال ذو أهمية كبيرة في العديد من التطبيقات مثل التنبؤ بالطقس وأسعار العملات ومعدلات استهلاك الوقود والكهرباء. يهدف البحث إلى تقديم نماذج وخوارزميات لتحسين دقة وكفاءة التنبؤ بالسلاسل الزمنية. يبدأ البحث بتعريف السلاسل الزمنية ومكوناتها الأساسية مثل الميل، التكرار، الموسمية، والتغيرات غير المنتظمة. ثم يستعرض البحث عدة نماذج رياضية مستخدمة في تحليل وتنبؤ السلاسل الزمنية مثل نموذج الانحدار الذاتي (AR)، نموذج المتوسط المتحرك (MA)، ونموذج الانحدار الذاتي المتوسط المتحرك (ARMA). كما يتناول البحث نماذج متقدمة مثل نموذج الانحدار الذاتي المتكامل المتوسط المتحرك (ARIMA) ونموذج الانحدار الذاتي المتكامل المتوسط المتحرك الموسمي (SARIMA). بالإضافة إلى ذلك، يستعرض البحث استخدام الشبكات العصبية الاصطناعية وآلة الدعم المتجهية (SVM) في التنبؤ بالسلاسل الزمنية، ويقارن بين أداء هذه النماذج باستخدام بيانات فعلية.
Critical review
دراسة نقدية: يتميز هذا البحث بشموليته وتغطيته لمجموعة واسعة من النماذج والخوارزميات المستخدمة في التنبؤ بالسلاسل الزمنية. ومع ذلك، يمكن توجيه بعض النقد البنّاء لتحسين البحث. أولاً، كان من الممكن أن يتضمن البحث تطبيقات عملية أكثر تفصيلاً لكل نموذج، مما يساعد في توضيح كيفية استخدام هذه النماذج في مواقف حقيقية. ثانياً، لم يتم التطرق بشكل كافٍ إلى التحديات والقيود التي قد تواجه الباحثين عند تطبيق هذه النماذج، مثل مشكلة البيانات المفقودة أو الضجيج في البيانات. ثالثاً، كان من الممكن أن يتضمن البحث مقارنة أكثر تفصيلاً بين النماذج المختلفة بناءً على معايير محددة مثل الدقة والكفاءة الزمنية. وأخيراً، كان من الممكن أن يتم استعراض بعض الأدوات البرمجية المتاحة التي يمكن استخدامها لتطبيق هذه النماذج، مما يسهل على الباحثين والممارسين في المجال.
Questions related to the research
  1. ما هي السلاسل الزمنية؟

    السلاسل الزمنية هي مجموعة متسلسلة من البيانات تم مشاهدتها أو قياسها على مدى فترات زمنية متتالية، ويمكن أن تكون هذه البيانات أحادية المتغير أو متعددة المتغيرات، مستمرة أو متقطعة.

  2. ما هي المكونات الأساسية للسلاسل الزمنية؟

    تتأثر السلاسل الزمنية بأربع مكونات أساسية: الميل (Trend)، التكرار (Cyclical)، الموسمية (Seasonal)، والتغيرات غير المنتظمة (Irregular components).

  3. ما هو نموذج الانحدار الذاتي (AR)؟

    نموذج الانحدار الذاتي (AR) هو نموذج يفترض أن القيمة المستقبلية للسلسلة الزمنية هي عبارة عن تركيب خطي من المشاهدات السابقة للسلسلة الزمنية مضافاً إليها خطأ. يتم استخدام هذا النموذج للتنبؤ بالقيم المستقبلية بناءً على القيم السابقة.

  4. كيف يمكن استخدام الشبكات العصبية الاصطناعية في التنبؤ بالسلاسل الزمنية؟

    تُستخدم الشبكات العصبية الاصطناعية في التنبؤ بالسلاسل الزمنية بفضل قدرتها على حل المسائل غير الخطية واستخراج العلاقة بين الدخل والخرج بناءً على بيانات السلسلة الزمنية فقط. يتم تقسيم السلسلة الزمنية إلى سلسلتين، واحدة للتدريب وأخرى للاختبار، ويتم تمرير نافذة من القيم عبر السلسلة الزمنية لتدريب النموذج على التنبؤ بالقيم المستقبلية.


References used
Asha Farhath, Arputhamary, Arockiam, 2016, A Srvey On ARIMA Forecasting Using Time Series Model
Mahalakshmi, Sridevi, .Rajaram, 2016, A Survey on Forecasting of Time Series Data
Ouahilal Meryem, Jellouli Ismail, El Mohajir Mohammed, 2014, A Comparative Study Of Predictive Algorithms For Time Series Forecasting
Thomas Kolarik, Gottfried Rudorfer. 2015, Time Series Forecasting Using Neural Networks
Ratnadip Adhikari, R. K. Agrawal, 2013, An Introductory Study on Time Series Modeling and Forecasting Ratnadip
rate research

Read More

The study aims at comparing ARIMA models and the exponential smoothing method in forecasting. This study also highlights the special and basic concepts of ARIMA model and the exponential smoothing method. The comparison focuses on the ability of both methods to forecast the time series with a narrow range of one point to another and the time series with a long range of one point to another, and also on the different lengths of the forecasting periods. Currency exchange rates of Shekel to American dollar were used to make this comparison in the period between 25/1/2010 to 22/10/2016. In addition, weekly gold prices were considered in the period between 10/1/2010 to 23/10/2016. RMSE standard was used in order to compare between both methods. In this study, the researcher came up with the conclusion that ARIMA models give a better forecasting for the time series with a long range of one point to another and for long term forecasting, but cannot produce a better forecasting for time series with a narrow range of one point to another as in currency exchange prices. On the contrary, exponential smoothing method can give better forecasting for Exchange Rates that has a narrow range of one point to another for its time series, while it cannot give better forecasting for long term forecasting periods
The study and design of water dams depend essential on prediction of water volumes or future predicted in rivers, by using the time series analysis of the historical measurements. The research aims to make statistical study of monthly water volume s incoming in AL-Aroos River in Syrian coastal and future prediction of these volumes. And the Box-Jenkins models is adopt to analysis the time series data, because of its high accuracy. We attend the monthly water volumes for 15 years. And after doing the wanted tests on model residuals we found that the best model to represent the data is SARIMA(0,1,2) (1,2,1)12 , and after dividing the data to 14 years to build the model and one year to test it , and depending on the smallest of weighted mean of criteria RMSE, MAP, MAE,. The best predicted model is SARIMA (1,1,0) (0,1,1)12 and the model give the nearest predicted of measured data actually.
We discussed in this work some predictive methods for time series and it is decomposing time series to its component (trend, Seasonality, cycle, random), Exponential smoothing, ARIMA, then we discussed some combining methods, then we formed a new c ombine for predict time series which depends on combining exponential smoothing and ARIMA using weighted average with MAPE weights, and applied all methods above on three seasonal time series , first hourly temperature in Aleppo in august 2011 ,second monthly milk production peer cow in Australia from Jan 1962 to Dec 1975,third quartly electricity production in Australia from Mar 1956 to Sep 1994, and compared the results which approved that the suggested method is the best.
The study and design of water-intakes on springs is based on the analysis of time series of historical measurements to achieve prediction of incoming water volumes or future expected. The research aims to model the monthly water flows of AL-SIN Sp ring in Syrian Coast and future expectations of these flows, by adopting the Box-Jenkins models to analyze the time series data, due to its reliable accuracy. Monthly water flows, thus, monthly volumes, for 101 month (from June 2008 to October 2016) were processed. Performing the stability of the time series on variance and median and non-seasonality and making the wanted tests on model residuals, we found that the best model to represent the data is SARIMA(2,0,1) (2,1,0)12 , and after dividing the data into 81 month to build the model and 20 month to test it. Depending on the smallest of weighted mean of criteria RMSE, MAP, MAE,. The best predicted model was SARIMA (3,1,0) (1,1,0)12 and the model gave the nearest predicted values to actually measured data in spring.
This study aimed to analyze the status of shares related to the banking sector in Amman Stock Exchange, through the use of time series analysis, relying on the achievement of the following objectives: 1- Analysis of the status of shares related to the banking sector in Amman Stock Exchange, through the use of time series analysis. 2- Access to an efficient market through the application of the conditions existing in the market. 3- Analysis of the status of the general trend of stock prices in Amman Stock Exchange, through the turnover rate of shares over twelve months for eight years starting from 2000-2007 in order to find the variables affecting performance. 4- Identifying the most important components of the time series affecting stock prices in Amman Stock Exchange (seasonal, periodical, and random), in addition to identifying which of these components are responsible for stock price changes. 5- Trying to determine the general tendency of the time series of stock prices for the coming period through the use of the model of basic components. This study was based on three major hypotheses. The study sample consisted of the banks listed in Amman Stock Exchange with a total of 17 banks. Furthermore, Microsoft Office Excel had been used to analyze the data of turnover rate of shares in Amman Stock Exchange to reach conclusions. The study came to a number of conclusions such as: • Results showed that the influence of irregular variables on the turnover rate of shares related to the banking sector, listed in Amman Stock Exchange, was clear, in addition to the impact of changes related to the general trend as well as the seasonal and periodical changes. • Results showed that the size of circulation plays a major role in changing the direction of prices. Thus, in the case of higher prices, increased circulation is desired, while decreased circulation will be the case for low prices. Based on the above conclusions, the researcher presented a series of suitable recommendations for the use of analysis model of time series in analyzing the status of shares in Amman Stock Exchange.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا