حظيت نمذجة وتوقع السلاسل الزمنية بأهمية كبيرة في العديد من المجالات التطبيقية كالتنبؤ بالطقس وأسعار العملات ومعدلات استهلاك الوقود والكهرباء، إن توقع السلاسل الزمنية من شأنه أن يزود المنظمات والشركات بالمعلومات الضرورية لاتخاذ القرارات الهامة، وبسبب أهمية هذا المجال من الناحية التطبيقية فإن الكثير من الأعمال البحثية التي جرت ضمنه خلال السنوات الماضية، إضافةً إلى العدد الكبير من النماذج والخوارزميات التي تم اقتراحها في أدب البحث العلمي والتي كان هدفها تحسين كل من الدقة والكفاءة في نمذجة وتوقع السلاسل الزمنية.
No English abstract
Artificial intelligence review:
Research summary
يتناول هذا البحث موضوع التنبؤ بالسلاسل الزمنية، وهو مجال ذو أهمية كبيرة في العديد من التطبيقات مثل التنبؤ بالطقس وأسعار العملات ومعدلات استهلاك الوقود والكهرباء. يهدف البحث إلى تقديم نماذج وخوارزميات لتحسين دقة وكفاءة التنبؤ بالسلاسل الزمنية. يبدأ البحث بتعريف السلاسل الزمنية ومكوناتها الأساسية مثل الميل، التكرار، الموسمية، والتغيرات غير المنتظمة. ثم يستعرض البحث عدة نماذج رياضية مستخدمة في تحليل وتنبؤ السلاسل الزمنية مثل نموذج الانحدار الذاتي (AR)، نموذج المتوسط المتحرك (MA)، ونموذج الانحدار الذاتي المتوسط المتحرك (ARMA). كما يتناول البحث نماذج متقدمة مثل نموذج الانحدار الذاتي المتكامل المتوسط المتحرك (ARIMA) ونموذج الانحدار الذاتي المتكامل المتوسط المتحرك الموسمي (SARIMA). بالإضافة إلى ذلك، يستعرض البحث استخدام الشبكات العصبية الاصطناعية وآلة الدعم المتجهية (SVM) في التنبؤ بالسلاسل الزمنية، ويقارن بين أداء هذه النماذج باستخدام بيانات فعلية.
Critical review
دراسة نقدية: يتميز هذا البحث بشموليته وتغطيته لمجموعة واسعة من النماذج والخوارزميات المستخدمة في التنبؤ بالسلاسل الزمنية. ومع ذلك، يمكن توجيه بعض النقد البنّاء لتحسين البحث. أولاً، كان من الممكن أن يتضمن البحث تطبيقات عملية أكثر تفصيلاً لكل نموذج، مما يساعد في توضيح كيفية استخدام هذه النماذج في مواقف حقيقية. ثانياً، لم يتم التطرق بشكل كافٍ إلى التحديات والقيود التي قد تواجه الباحثين عند تطبيق هذه النماذج، مثل مشكلة البيانات المفقودة أو الضجيج في البيانات. ثالثاً، كان من الممكن أن يتضمن البحث مقارنة أكثر تفصيلاً بين النماذج المختلفة بناءً على معايير محددة مثل الدقة والكفاءة الزمنية. وأخيراً، كان من الممكن أن يتم استعراض بعض الأدوات البرمجية المتاحة التي يمكن استخدامها لتطبيق هذه النماذج، مما يسهل على الباحثين والممارسين في المجال.
Questions related to the research
-
ما هي السلاسل الزمنية؟
السلاسل الزمنية هي مجموعة متسلسلة من البيانات تم مشاهدتها أو قياسها على مدى فترات زمنية متتالية، ويمكن أن تكون هذه البيانات أحادية المتغير أو متعددة المتغيرات، مستمرة أو متقطعة.
-
ما هي المكونات الأساسية للسلاسل الزمنية؟
تتأثر السلاسل الزمنية بأربع مكونات أساسية: الميل (Trend)، التكرار (Cyclical)، الموسمية (Seasonal)، والتغيرات غير المنتظمة (Irregular components).
-
ما هو نموذج الانحدار الذاتي (AR)؟
نموذج الانحدار الذاتي (AR) هو نموذج يفترض أن القيمة المستقبلية للسلسلة الزمنية هي عبارة عن تركيب خطي من المشاهدات السابقة للسلسلة الزمنية مضافاً إليها خطأ. يتم استخدام هذا النموذج للتنبؤ بالقيم المستقبلية بناءً على القيم السابقة.
-
كيف يمكن استخدام الشبكات العصبية الاصطناعية في التنبؤ بالسلاسل الزمنية؟
تُستخدم الشبكات العصبية الاصطناعية في التنبؤ بالسلاسل الزمنية بفضل قدرتها على حل المسائل غير الخطية واستخراج العلاقة بين الدخل والخرج بناءً على بيانات السلسلة الزمنية فقط. يتم تقسيم السلسلة الزمنية إلى سلسلتين، واحدة للتدريب وأخرى للاختبار، ويتم تمرير نافذة من القيم عبر السلسلة الزمنية لتدريب النموذج على التنبؤ بالقيم المستقبلية.
References used
Asha Farhath, Arputhamary, Arockiam, 2016, A Srvey On ARIMA Forecasting Using Time Series Model
Mahalakshmi, Sridevi, .Rajaram, 2016, A Survey on Forecasting of Time Series Data
Ouahilal Meryem, Jellouli Ismail, El Mohajir Mohammed, 2014, A Comparative Study Of Predictive Algorithms For Time Series Forecasting
Thomas Kolarik, Gottfried Rudorfer. 2015, Time Series Forecasting Using Neural Networks
Ratnadip Adhikari, R. K. Agrawal, 2013, An Introductory Study on Time Series Modeling and Forecasting Ratnadip
The study aims at comparing ARIMA models and the exponential
smoothing method in forecasting. This study also highlights the special
and basic concepts of ARIMA model and the exponential smoothing
method.
The comparison focuses on the ability
The study and design of water dams depend essential on prediction of water volumes
or future predicted in rivers, by using the time series analysis of the historical
measurements.
The research aims to make statistical study of monthly water volume
We discussed in this work some predictive methods for time series and it is decomposing time series to its component (trend, Seasonality, cycle, random), Exponential smoothing, ARIMA, then we discussed some combining methods, then we formed a new c
The study and design of water-intakes on springs is based on the analysis of time series of
historical measurements to achieve prediction of incoming water volumes or future
expected.
The research aims to model the monthly water flows of AL-SIN Sp
This study aimed to analyze the status of shares related to the
banking sector in Amman Stock Exchange, through the use of time series
analysis, relying on the achievement of the following objectives:
1- Analysis of the status of shares related to