Do you want to publish a course? Click here

Due to its great power in modeling non-Euclidean data like graphs or manifolds, deep learning on graph techniques (i.e., Graph Neural Networks (GNNs)) have opened a new door to solving challenging graph-related NLP problems. There has seen a surge of interests in applying deep learning on graph techniques to NLP, and has achieved considerable success in many NLP tasks, ranging from classification tasks like sentence classification, semantic role labeling and relation extraction, to generation tasks like machine translation, question generation and summarization. Despite these successes, deep learning on graphs for NLP still face many challenges, including automatically transforming original text sequence data into highly graph-structured data, and effectively modeling complex data that involves mapping between graph-based inputs and other highly structured output data such as sequences, trees, and graph data with multi-types in both nodes and edges. This tutorial will cover relevant and interesting topics on applying deep learning on graph techniques to NLP, including automatic graph construction for NLP, graph representation learning for NLP, advanced GNN based models (e.g., graph2seq, graph2tree, and graph2graph) for NLP, and the applications of GNNs in various NLP tasks (e.g., machine translation, natural language generation, information extraction and semantic parsing). In addition, hands-on demonstration sessions will be included to help the audience gain practical experience on applying GNNs to solve challenging NLP problems using our recently developed open source library -- Graph4NLP, the first library for researchers and practitioners for easy use of GNNs for various NLP tasks.
Deep neural networks have constantly pushed the state-of-the-art performance in natural language processing and are considered as the de-facto modeling approach in solving complex NLP tasks such as machine translation, summarization and question-answ ering. Despite the proven efficacy of deep neural networks at-large, their opaqueness is a major cause of concern. In this tutorial, we will present research work on interpreting fine-grained components of a neural network model from two perspectives, i) fine-grained interpretation, and ii) causation analysis. The former is a class of methods to analyze neurons with respect to a desired language concept or a task. The latter studies the role of neurons and input features in explaining the decisions made by the model. We will also discuss how interpretation methods and causation analysis can connect towards better interpretability of model prediction. Finally, we will walk you through various toolkits that facilitate fine-grained interpretation and causation analysis of neural models.
This research deals with the modeling of a Multi-Layers Feed Forward Artificial Neural Networks (MLFFNN), trained using Gradient Descent algorithm with Momentum factor & adaptive learning rate, to estimate the output of the neural network correspon ding to the optimal Duty Cycle of DC-DC Boost Converter to track the Maximum Power Point of Photovoltaic Energy Systems. Thus, the DMPPT-ANN “Developed MPPT-ANN” controller proposed in this research, independent in his work on the use of electrical measurements output of PV system to determine the duty cycle, and without the need to use a Proportional-Integrative Controller to control the cycle of the work of the of DC-DC Boost Converter, and this improves the dynamic performance of the proposed controller to determine the optimal Duty Cycle accurately and quickly. In this context, this research discusses the optimal selection of the proposed MLFFNN structure in the research in terms of determining the optimum number of hidden layers and the optimal number of neurons in them, evaluating the values of the Mean square error and the resulting Correlation Coefficient after each training of the neural network. The final network model with the optimal structure is then adopted to form the DMPPT-ANN Controller to track the MPP point of the PV system. The simulation results performed in the Matlab / Simulink environment demonstrated the best performance of the proposed DMPPT-ANN controller based on the MLFFNN neural network model, by accurately estimating the Duty Cycle and improving the response speed of the PV system output to MPP access, , as well as finally eliminating the resulting oscillations in the steady state of the Power response curve of PV system compared with the use of a number of reference controls: an advanced tracking controller MPPT-ANN-PI based on ANN network to estimate MPP point voltage with conventional PI controller, a MPPT-FLC and a conventional MPPT-INC uses the Incremental Conductance technique INC
Modelling the relationship between drinking water turbidity and other indicators of water quality in Al-Sin drinking water purification plant using Dynamic Artificial neural networks could help in the implementation of the stabilization for the per formance of the plant because these neural networks provide efficient tool to deal with the complex, dynamic and non-linear nature of purification processes. They have the ability to response to various instant changes in parameters influencing water purification. In this research, four models of feed-forward back-propagation dynamic neural network were designed to predict the effluent turbidity from Al-Sin drinking water purification plant. The models were built based on turbidity, pH and conductivity of raw water data while the effluent turbidity data were used for verify the performance accuracy of each network. The results of this research confirm the ability of dynamic neural networks in modeling and simulating the non-linearity behavior of water turbidity as well as to predict its values. They can be used in Al-Sin drinking water purification plant in order to achieve the stabilization of its performance.
بناء نظام ذكي يقوم بالتعرف على الأصناف الموجودة في صورة وتوليد توصيف نصي لهذه الأغراض الموجودة في الصورة. استخدمنا الشبكات العصبونية الملتفة Convolutional Neural Networks للقيام بعملية استخلاص الأصناف الموجودة في الصورة، وأدخلنا هذه الأصناف إلى شبكة عصبونية تكرارية Recurrent Neural Network للقيام بعملية توليد التوصيف النصي.
حظيت نمذجة وتوقع السلاسل الزمنية بأهمية كبيرة في العديد من المجالات التطبيقية كالتنبؤ بالطقس وأسعار العملات ومعدلات استهلاك الوقود والكهرباء، إن توقع السلاسل الزمنية من شأنه أن يزود المنظمات والشركات بالمعلومات الضرورية لاتخاذ القرارات الهامة، وبسبب أهمية هذا المجال من الناحية التطبيقية فإن الكثير من الأعمال البحثية التي جرت ضمنه خلال السنوات الماضية، إضافةً إلى العدد الكبير من النماذج والخوارزميات التي تم اقتراحها في أدب البحث العلمي والتي كان هدفها تحسين كل من الدقة والكفاءة في نمذجة وتوقع السلاسل الزمنية.
This research aims to predict the level of air pollution with a set of data used to make predictions through them and to obtain the best prediction using several models and compare them and find the appropriate solution.
This research aims to produce a diagnosis system for breast cancer by using Neural Network depending on Back Propagation algorithm(BPNN) and Adaptive Neuro Fuzzy Inference System ‘ANFIS’, the both of studies was done using structural features of b iopsies in “Wisconson Breast Cancer “data base. In the end a comparison was made between the two studies of malignant- benign classification of breast masses of breast cancer which has accuracy 95,95% with BPNN and 91.9% with ANFIS system, this results can be consider very important if they compared with researches depending on image features that obtained of various devises like mammography, magnetic resonance.
the aim of this study is determination of the most influential climatic factors in the rainfall runoff relationship in Al-Kabir Al-shimalee river using artificial neural networks. The inputs included Precipitation, runoff, in different delays, in addition on لاclimate factor in each network, to determinate the best model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا