تهدف هذه الدراسة إلى المقارنة بين نماذج Arima وطريقة التمهيد الأسي بالتنبؤ في السلاسل الزمنية، كما نسلط الضوء على مفاهيم الأساسية الخاصة بمنهجية ARIMA وطريقة التمهيد الأسي.
ركزت الدراسة على التنبؤ بالسلاسل الزمنية ذات النطاق الضيق بين نقطة وأخرى ذات نطاق واسع بالاضافة إلى استخدام أطوال مختلفة من فترات التنبؤ وقد تم استخدام معيار RMSE للمقارنة بين الطريقتين.
The study aims at comparing ARIMA models and the exponential
smoothing method in forecasting. This study also highlights the special
and basic concepts of ARIMA model and the exponential smoothing
method.
The comparison focuses on the ability of both methods to forecast
the time series with a narrow range of one point to another and the time
series with a long range of one point to another, and also on the different
lengths of the forecasting periods. Currency exchange rates of Shekel to
American dollar were used to make this comparison in the period
between 25/1/2010 to 22/10/2016. In addition, weekly gold prices were
considered in the period between 10/1/2010 to 23/10/2016. RMSE
standard was used in order to compare between both methods. In this
study, the researcher came up with the conclusion that ARIMA models
give a better forecasting for the time series with a long range of one point
to another and for long term forecasting, but cannot produce a better
forecasting for time series with a narrow range of one point to another as
in currency exchange prices.
On the contrary, exponential smoothing method can give better
forecasting for Exchange Rates that has a narrow range of one point to
another for its time series, while it cannot give better forecasting for long
term forecasting periods
Artificial intelligence review:
Research summary
تهدف هذه الدراسة إلى مقارنة نماذج ARIMA وطريقة التمهيد الأسي في التنبؤ بالسلاسل الزمنية. تركز الدراسة على التنبؤ بالسلاسل الزمنية ذات النطاق الضيق بين نقطة وأخرى وذات النطاق الواسع بين نقطة وأخرى، بالإضافة إلى استخدام أطوال مختلفة من فترات التنبؤ. تم استخدام بيانات أسعار الصرف اليومية للشيكل مقابل الدولار الأمريكي من الفترة 25/1/2010 إلى 22/10/2016، وكذلك أسعار الذهب الأسبوعية من 10/1/2010 إلى 23/10/2016. تم استخدام معيار RMSE للمقارنة بين الطريقتين. توصلت الدراسة إلى أن نماذج ARIMA تعطي تنبؤات أفضل للسلاسل الزمنية ذات النطاق الواسع بين نقطة وأخرى وللتنبؤ طويل الأمد، بينما يمكن للتمهيد الأسي إعطاء تنبؤات أفضل للسلاسل الزمنية ذات النطاق الضيق بين نقطة وأخرى كما في أسعار صرف العملات.
Critical review
دراسة نقدية: تعتبر هذه الدراسة مهمة في مجال التنبؤ بالسلاسل الزمنية، إلا أنها قد تكون محدودة في تطبيقاتها بسبب اعتمادها على نوعين فقط من البيانات (أسعار الصرف وأسعار الذهب). كان من الممكن أن تكون الدراسة أكثر شمولية إذا تضمنت أنواعًا أخرى من السلاسل الزمنية. كما أن استخدام معيار RMSE فقط لتقييم الأداء قد لا يكون كافيًا، وكان من الأفضل استخدام معايير أخرى مثل MAE أو MAPE لتقديم صورة أكثر شمولية عن أداء النماذج.
Questions related to the research
-
ما هي البيانات المستخدمة في هذه الدراسة؟
تم استخدام بيانات أسعار الصرف اليومية للشيكل مقابل الدولار الأمريكي من الفترة 25/1/2010 إلى 22/10/2016، وكذلك أسعار الذهب الأسبوعية من 10/1/2010 إلى 23/10/2016.
-
ما هو المعيار المستخدم للمقارنة بين الطريقتين في الدراسة؟
تم استخدام معيار RMSE للمقارنة بين الطريقتين.
-
ما هي النتائج التي توصلت إليها الدراسة بخصوص نماذج ARIMA؟
توصلت الدراسة إلى أن نماذج ARIMA تعطي تنبؤات أفضل للسلاسل الزمنية ذات النطاق الواسع بين نقطة وأخرى وللتنبؤ طويل الأمد.
-
ما هي النتائج التي توصلت إليها الدراسة بخصوص طريقة التمهيد الأسي؟
توصلت الدراسة إلى أن التمهيد الأسي يمكن أن يعطي تنبؤات أفضل للسلاسل الزمنية ذات النطاق الضيق بين نقطة وأخرى كما في أسعار صرف العملات.
References used
(Makridakis, 1998): "Forecasting :Methods and Applications" , 2nd ed. John Wiley & Sons New York U.S.A.
حظيت نمذجة وتوقع السلاسل الزمنية بأهمية كبيرة في العديد من المجالات التطبيقية كالتنبؤ بالطقس وأسعار العملات ومعدلات استهلاك الوقود والكهرباء، إن توقع السلاسل الزمنية من شأنه أن يزود المنظمات والشركات بالمعلومات الضرورية لاتخاذ القرارات الهامة، وبسبب
Olive cultivation is witnessing a remarkable development in the Syrian Arab
Republic in terms of area cultivated and the number of trees and the quality of
cultivated varieties of olives. The result of this evolution Syria occupied first place in
We discussed in this work some predictive methods for time series and it is decomposing time series to its component (trend, Seasonality, cycle, random), Exponential smoothing, ARIMA, then we discussed some combining methods, then we formed a new c
The objective of the research is to predict the production and
area of tobacco production in the Syrian Arab Republic for the period
(2019-2027) using ARIMA analysis, based on time series data on
production and cultivated area for the period 1975-
We present in this paper the neutrosophic exponential distribution,
which is an extension of the classical exponential distribution
according to the neutrosophic logic (a new non-classical logic which
was founded by the American philosopher and ma