Do you want to publish a course? Click here

A Comparative study on ARIMA model and Exponential smoothing method in time series forecasting

دراسة مقارنة بين نموذج ARIMA وطريقة التمهيد الأسي في التنبؤ بالسلاسل الزمنية

1072   3   0   0.0 ( 0 )
 Publication date 2017
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The study aims at comparing ARIMA models and the exponential smoothing method in forecasting. This study also highlights the special and basic concepts of ARIMA model and the exponential smoothing method. The comparison focuses on the ability of both methods to forecast the time series with a narrow range of one point to another and the time series with a long range of one point to another, and also on the different lengths of the forecasting periods. Currency exchange rates of Shekel to American dollar were used to make this comparison in the period between 25/1/2010 to 22/10/2016. In addition, weekly gold prices were considered in the period between 10/1/2010 to 23/10/2016. RMSE standard was used in order to compare between both methods. In this study, the researcher came up with the conclusion that ARIMA models give a better forecasting for the time series with a long range of one point to another and for long term forecasting, but cannot produce a better forecasting for time series with a narrow range of one point to another as in currency exchange prices. On the contrary, exponential smoothing method can give better forecasting for Exchange Rates that has a narrow range of one point to another for its time series, while it cannot give better forecasting for long term forecasting periods


Artificial intelligence review:
Research summary
تهدف هذه الدراسة إلى مقارنة نماذج ARIMA وطريقة التمهيد الأسي في التنبؤ بالسلاسل الزمنية. تركز الدراسة على التنبؤ بالسلاسل الزمنية ذات النطاق الضيق بين نقطة وأخرى وذات النطاق الواسع بين نقطة وأخرى، بالإضافة إلى استخدام أطوال مختلفة من فترات التنبؤ. تم استخدام بيانات أسعار الصرف اليومية للشيكل مقابل الدولار الأمريكي من الفترة 25/1/2010 إلى 22/10/2016، وكذلك أسعار الذهب الأسبوعية من 10/1/2010 إلى 23/10/2016. تم استخدام معيار RMSE للمقارنة بين الطريقتين. توصلت الدراسة إلى أن نماذج ARIMA تعطي تنبؤات أفضل للسلاسل الزمنية ذات النطاق الواسع بين نقطة وأخرى وللتنبؤ طويل الأمد، بينما يمكن للتمهيد الأسي إعطاء تنبؤات أفضل للسلاسل الزمنية ذات النطاق الضيق بين نقطة وأخرى كما في أسعار صرف العملات.
Critical review
دراسة نقدية: تعتبر هذه الدراسة مهمة في مجال التنبؤ بالسلاسل الزمنية، إلا أنها قد تكون محدودة في تطبيقاتها بسبب اعتمادها على نوعين فقط من البيانات (أسعار الصرف وأسعار الذهب). كان من الممكن أن تكون الدراسة أكثر شمولية إذا تضمنت أنواعًا أخرى من السلاسل الزمنية. كما أن استخدام معيار RMSE فقط لتقييم الأداء قد لا يكون كافيًا، وكان من الأفضل استخدام معايير أخرى مثل MAE أو MAPE لتقديم صورة أكثر شمولية عن أداء النماذج.
Questions related to the research
  1. ما هي البيانات المستخدمة في هذه الدراسة؟

    تم استخدام بيانات أسعار الصرف اليومية للشيكل مقابل الدولار الأمريكي من الفترة 25/1/2010 إلى 22/10/2016، وكذلك أسعار الذهب الأسبوعية من 10/1/2010 إلى 23/10/2016.

  2. ما هو المعيار المستخدم للمقارنة بين الطريقتين في الدراسة؟

    تم استخدام معيار RMSE للمقارنة بين الطريقتين.

  3. ما هي النتائج التي توصلت إليها الدراسة بخصوص نماذج ARIMA؟

    توصلت الدراسة إلى أن نماذج ARIMA تعطي تنبؤات أفضل للسلاسل الزمنية ذات النطاق الواسع بين نقطة وأخرى وللتنبؤ طويل الأمد.

  4. ما هي النتائج التي توصلت إليها الدراسة بخصوص طريقة التمهيد الأسي؟

    توصلت الدراسة إلى أن التمهيد الأسي يمكن أن يعطي تنبؤات أفضل للسلاسل الزمنية ذات النطاق الضيق بين نقطة وأخرى كما في أسعار صرف العملات.


References used
(Makridakis, 1998): "Forecasting :Methods and Applications" , 2nd ed. John Wiley & Sons New York U.S.A.
rate research

Read More

حظيت نمذجة وتوقع السلاسل الزمنية بأهمية كبيرة في العديد من المجالات التطبيقية كالتنبؤ بالطقس وأسعار العملات ومعدلات استهلاك الوقود والكهرباء، إن توقع السلاسل الزمنية من شأنه أن يزود المنظمات والشركات بالمعلومات الضرورية لاتخاذ القرارات الهامة، وبسبب أهمية هذا المجال من الناحية التطبيقية فإن الكثير من الأعمال البحثية التي جرت ضمنه خلال السنوات الماضية، إضافةً إلى العدد الكبير من النماذج والخوارزميات التي تم اقتراحها في أدب البحث العلمي والتي كان هدفها تحسين كل من الدقة والكفاءة في نمذجة وتوقع السلاسل الزمنية.
Olive cultivation is witnessing a remarkable development in the Syrian Arab Republic in terms of area cultivated and the number of trees and the quality of cultivated varieties of olives. The result of this evolution Syria occupied first place in the Arab and olive production ranked fifth in the world after Spain, Italy, Greece and Turkey, by passing Tunisia, which occupies the first place was an Arab. Olive production as dependent variable is affected by much of the factors which can be considered independent: The number of trees and age of tree and tree type and amount of rainfall, temperature and location of olive cultivation…… However, the most important influence on the production of olive is a phenomenon alternate fruit bearing in fruit trees.This lead to the affected by a time series of olive production, in addition to the regular periodic of other factors, the general trend and random factors. This study aims to provide a new method for modeling and analysis of time series with a regular cyclical factors and its application to olive production in the Syrian Arab Republic. The study to develop an econometric model based on the proposed new method can be used to predict the production of olive in Syria, and predict the size of production until 2016. ...
We discussed in this work some predictive methods for time series and it is decomposing time series to its component (trend, Seasonality, cycle, random), Exponential smoothing, ARIMA, then we discussed some combining methods, then we formed a new c ombine for predict time series which depends on combining exponential smoothing and ARIMA using weighted average with MAPE weights, and applied all methods above on three seasonal time series , first hourly temperature in Aleppo in august 2011 ,second monthly milk production peer cow in Australia from Jan 1962 to Dec 1975,third quartly electricity production in Australia from Mar 1956 to Sep 1994, and compared the results which approved that the suggested method is the best.
The objective of the research is to predict the production and area of tobacco production in the Syrian Arab Republic for the period (2019-2027) using ARIMA analysis, based on time series data on production and cultivated area for the period 1975- 2017.The research was based primarily on the secondary data of FAO, based on the descriptive method of analysis in both descriptive and quantitative terms, using the linear analysis of the time series regression function in its various mathematical images, as well as using Box-Jenkins method to predict future values of production The maximal Likelihood Estimation (MLE) for Autoregressive Integrated Moving Average (ARIMA) models.Results showed that the best predictive models of production and cultivated area during the required period were ARIMA (2.2,2)According to the selected model, the production volume in 2019 will reach 9130.9 tons between a minimum of 3056.9 tons and a maximum of 15205.0 tons, and it will continue to decline until 2025 to reach 920.0 tons and increase again in 2026 to 6766.4 tons between a minimum of 6579.3 tons and a maximum of 7932.0 tons, and then returns to decline again in the year (2027) to 2281.4 tons.The cultivated area will reach 2,736.9 hectares in the year 2019 to a minimum of 3010.4 ha and a maximum of 11,236.5 ha. It will continue to decline until 2088 to reach 3588.5 hectares. This will increase again in 2026 to 4966.7 hectares between a minimum of 4553.5 ha and maximum of 10487.0 hectares and it is expected to decline in 2027 to reach 3830.5 hectares between a minimum of 3623.6 and maximum of 10284.5 hectares.
We present in this paper the neutrosophic exponential distribution, which is an extension of the classical exponential distribution according to the neutrosophic logic (a new non-classical logic which was founded by the American philosopher and ma thematical Florentin Smarandache, which he introduced as a generalization of fuzzy logic especially the intuitionistic fuzzy logic), so that it can handle all the data that it is not precisely defined.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا