Do you want to publish a course? Click here

Components of Temperature Time Series at Tartous meteostation

مكونات السلسلة الزمنية لدرجات الحرارة في محطة طرطوس

1634   0   31   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The four components of temperature (max., min.) phenomena, seasonal(S), Trend(T), cyclical(C), and random (I) for Tartous city have been studied. Four different methods (Average percentages method, Percentage of the general trend method, The ratio of the moving average method, Link Relative method) are used to deduct the (S) components and seasonal index for each method is determined. The statistical inferences pointed that the Average percentages method can be used in the prediction of temperature. for the year 2003 depending on a historical record (1957- 2002). The result of this deduction showed that the temperature is a cyclical phenomena. The known statistical test like mean, Standard deviation and cumulative probability have been done which showed a good correlation between the predicted and historical data.


Artificial intelligence review:
Research summary
تتناول هذه الدراسة تحليل السلسلة الزمنية لدرجات الحرارة في محطة طرطوس، حيث تم دراسة المركبات الأربعة لظاهرة درجة الحرارة (الصغرى والعظمى) وهي الموسمية (S) والنزعة أو الاتجاه العام (T) والدورية (C) والعشوائية (I). استخدمت أربع طرائق مختلفة لطرح المركبة الموسمية وتحديد الدليل الموسمي، وهي: طريقة متوسط النسب المئوية، طريقة النسبة المئوية للاتجاه العام، طريقة النسبة للمتوسط المتحرك، وطريقة الوصلات النسبية. أظهرت النتائج أن طريقة متوسط النسب المئوية هي الأفضل للتنبؤ بدرجات الحرارة. تم استخدام السجل التاريخي للفترة (1957-2002) لتوقع درجات الحرارة لعام 2003، وأظهرت النتائج تطابقاً جيداً بين القيم المتنبأ بها والقيم التاريخية. تم تطبيق بعض الفحوصات الإحصائية مثل المتوسط، والانحراف المعياري، والاحتمالية المتجمعة، والتي أظهرت وجود تطابق كبير بين القيم التاريخية والمتنبأ بها. خلصت الدراسة إلى أن درجات الحرارة في طرطوس تتبع نمطاً دورياً يمكن التنبؤ به باستخدام الأساليب الإحصائية المناسبة.
Critical review
تعتبر هذه الدراسة مفيدة في فهم وتحليل السلسلة الزمنية لدرجات الحرارة في محطة طرطوس، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، كان من الممكن تقديم تحليل أكثر تفصيلاً للعوامل الخارجية التي قد تؤثر على درجات الحرارة مثل التغيرات المناخية العالمية. ثانياً، الدراسة اعتمدت بشكل كبير على البيانات التاريخية دون النظر إلى التغيرات الحديثة التي قد تكون طرأت بعد عام 2003. ثالثاً، كان من الممكن استخدام تقنيات حديثة في تحليل البيانات مثل التعلم الآلي لتحسين دقة التنبؤ. وأخيراً، كان من الأفضل تقديم توصيات عملية بناءً على النتائج لتحسين إدارة الموارد المائية والزراعية في المنطقة.
Questions related to the research
  1. ما هي المركبات الأربعة التي تم دراستها في ظاهرة درجة الحرارة في محطة طرطوس؟

    المركبات الأربعة هي الموسمية (S)، النزعة أو الاتجاه العام (T)، الدورية (C)، والعشوائية (I).

  2. ما هي الطريقة الأفضل التي تم استخدامها لطرح المركبة الموسمية؟

    طريقة متوسط النسب المئوية هي الطريقة الأفضل التي تم استخدامها لطرح المركبة الموسمية.

  3. ما هي الفترة الزمنية التي تم استخدامها في السجل التاريخي لتوقع درجات الحرارة لعام 2003؟

    الفترة الزمنية المستخدمة في السجل التاريخي هي من عام 1957 إلى عام 2002.

  4. ما هي الفحوصات الإحصائية التي تم تطبيقها للتأكد من صحة التنبؤ؟

    تم تطبيق فحوصات إحصائية مثل المتوسط، والانحراف المعياري، والاحتمالية المتجمعة للتأكد من صحة التنبؤ.


References used
MURRAY, R.S. Statistics. Mc Graw-Hill International book company, Newyork, 1972, 538
KEITH, W.H. Time Series Analysis in Water Resources. American water Resources Association, Canada, 1985, 609- 623
MUTREJA, K.N. Applied Hydrology. Tata Mc Graw-Hill company, New Dalhi, 1986, 959
rate research

Read More

حظيت نمذجة وتوقع السلاسل الزمنية بأهمية كبيرة في العديد من المجالات التطبيقية كالتنبؤ بالطقس وأسعار العملات ومعدلات استهلاك الوقود والكهرباء، إن توقع السلاسل الزمنية من شأنه أن يزود المنظمات والشركات بالمعلومات الضرورية لاتخاذ القرارات الهامة، وبسبب أهمية هذا المجال من الناحية التطبيقية فإن الكثير من الأعمال البحثية التي جرت ضمنه خلال السنوات الماضية، إضافةً إلى العدد الكبير من النماذج والخوارزميات التي تم اقتراحها في أدب البحث العلمي والتي كان هدفها تحسين كل من الدقة والكفاءة في نمذجة وتوقع السلاسل الزمنية.
The experiment was done within -2014 in plant physiology lab.of agriculture faculty of Tishreen University for estimation of high temperature stress toleration of citrus leaves in three varietis(Citrus Unshiu , Meyer Lemon,Citrus SinensisWashington ). Many random samples of leaves were gathered from the foliage of the examined categories whereas tha average of the taken leaves was 200 from the whole sides for each one tree from the branches which are one year old . which were put for limited duration in a water bath about many different degrees of temperature then they were put in water and then in a solution of HCL acid . Many references were studied of containing :non spotting on leaves ,which means they are un harmed,simple spotting,the spotting of more than half of the leaves area,the perfect leaves spotting. Studied temperature were as the following :40-50-60-70-80.Each one of this mentiond temperature,40 leaves were used .The statistics analys were done with the way of Genstat 12,for the comparison between averages for the sake of calculating the least significant difference at the guidance level :5% . Studies showed that Satsuma leaves are the most toleration for high temperature,next Citrus SinensisWashington is less than Satsuma.At last Meyer Lemon was the least .
We discussed in this work some predictive methods for time series and it is decomposing time series to its component (trend, Seasonality, cycle, random), Exponential smoothing, ARIMA, then we discussed some combining methods, then we formed a new c ombine for predict time series which depends on combining exponential smoothing and ARIMA using weighted average with MAPE weights, and applied all methods above on three seasonal time series , first hourly temperature in Aleppo in august 2011 ,second monthly milk production peer cow in Australia from Jan 1962 to Dec 1975,third quartly electricity production in Australia from Mar 1956 to Sep 1994, and compared the results which approved that the suggested method is the best.
The analysis of time series data is one of the most important statistical topics, usually focuses on forecasting the future behavior of the series at a certain time for certain purposes.
The study aims at comparing ARIMA models and the exponential smoothing method in forecasting. This study also highlights the special and basic concepts of ARIMA model and the exponential smoothing method. The comparison focuses on the ability of both methods to forecast the time series with a narrow range of one point to another and the time series with a long range of one point to another, and also on the different lengths of the forecasting periods. Currency exchange rates of Shekel to American dollar were used to make this comparison in the period between 25/1/2010 to 22/10/2016. In addition, weekly gold prices were considered in the period between 10/1/2010 to 23/10/2016. RMSE standard was used in order to compare between both methods. In this study, the researcher came up with the conclusion that ARIMA models give a better forecasting for the time series with a long range of one point to another and for long term forecasting, but cannot produce a better forecasting for time series with a narrow range of one point to another as in currency exchange prices. On the contrary, exponential smoothing method can give better forecasting for Exchange Rates that has a narrow range of one point to another for its time series, while it cannot give better forecasting for long term forecasting periods
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا