Do you want to publish a course? Click here

In this work, we have been found explicit exact soliton wave solutions for Zeldovich equation with time-dependent coefficients, by using the tanh function method with nonlinear wave transform, in general case. The results obtained shows that these exact solutions are affected the nonlinear nature of the wave variable, it is also shown that this method is effective and appropriate for solving this kind of nonlinear PDEs, which are models of many applied problems in physics, chemistry and population evolution.
In this paper, spline technique with five collocation parameters for finding the numerical solutions of delay differential equations (DDEs) is introduced. The presented method is based on the approximating the exact solution by C4-Hermite spline i nterpolation and as well as five collocation points at every subinterval of DDE.The study shows that the spline solution of purposed technique is existent and unique and has strongly stable for some collocation parameters. Moreover, this method if applied to test problem will be consistent, p-stable and convergent from order nine .In addition ,it possesses unbounded region of p-stability. Numerical experiments for four examples are given to verify the reliability and efficiency of the purposed technique. Comparisons show that numerical results of our method are more accurate than other methods.
In this paper, we find distributional solutions of boundary value problems in Sobolev spaces. This solution will be given as Fourier series with respect to the Eigen functions of a positive definite operator and its square roots. Then, we obtain solutions of such problems of a real order.
In this paper, spline approximations with five collocation points are used for the numerical simulation of stochastic of differential equations(SDE). First, we have modeled continuous-valued discrete wiener process, and then numerical asymptotic st ochastic stability of spline method is studied when applied to SDEs. The study shows that the method when applied to linear and nonlinear SDEs are stable and convergent. Moreover, the scheme is tested on two linear and nonlinear problems to illustrate the applicability and efficiency of the purposed method. Comparisons of our results with Euler–Maruyama method, Milstein’s method and Runge-Kutta method, it reveals that the our scheme is better than others.
This research studies the distributive solutions for some partial differential equations of second order. We study specially the distributive solutions for Laplas equation, Heat equation, wave equations and schrodinger equation. We introduce the fundamental solutions for precedent equations and inference the distributive solutions by using the convolution of distributions concept. For that we use some of lemmas and theorems with proofs, specially for Laplas equation. And precedent some of concepts, defintions and remarks.
In this work, we have found exact traveling wave solutions for generalized Fitzhug- Nagumo equation with arbitrary constant coefficients, by using the homogeneous balance method, The obtained results shows that these solutions changes with the spec ials solution of Ricati ODE with arbitrary constant coefficients , and shows that this method is simple, direct and very efficient for solving this kind of nonlinear PDEs, It can be applied to nonlinear PDEs which frequently arise in engineering sciences, mathematical physics and other scientific real-time applications fields.
This work suggests a study of small motions of system of anideal-relaxing fluids which rotate ina limited space. First, we present the problem and reducethe initial boundary value problem that describe it to Cauchy problem for an ordinary differentia l equation of the second order form in Hilbert space. This allows us to prove the unique solvability theorem.
The goal of this work is finding exact solitary wave solutions to generalized Fitzhug-Nagumo equation with constant coefficients, by using the exp-function method, where we have illustrated graphically one of them, the obtained results, with aid of s ymbolic programs as Maple and Mathematica, show that this method is simple, direct and very efficient for solving this kind of nonlinear PDEs, and it requires no advanced mathematical knowledge, so it is convenient to scientists and engineering.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا