في هذا البحث نوجد حلولاً توزيعية لمسائل قيم حدية في فضاءات سوبوليف بشكل
سلاسل فورييو، حيث ننطلق من مؤثر تفاضلي معروفة خواصه في فضاءات هيلبرت،
فنوجد جذوره التربيعية المتتالية لنحصل على معادلات من مرتبة نصف صحيحة من ثم
يتم التعميم على مرتبة حقيقية.
In this paper, we find distributional solutions of boundary value
problems in Sobolev spaces. This solution will be given as Fourier
series with respect to the Eigen functions of a positive definite
operator and its square roots.
Then, we obtain solutions of such problems of a real order.
Artificial intelligence review:
Research summary
يتناول هذا البحث حل مسائل القيم الحدية ذات الرتب غير الصحيحة في فضاءات سوبوليف. يتم تقديم الحلول التوزيعية لهذه المسائل باستخدام سلاسل فورييه بالنسبة لدوال Eigen الخاصة بمؤثر موجب محدد وجذوره التربيعية. يبدأ البحث بمقدمة حول مسألة ديرخليه البسيطة والمعروفة، ثم ينتقل إلى دراسة مسائل مشابهة في فضاءات سوبوليف. يتم استخدام نظرية التوزيعات والنظرية الطيفية للمؤثرات غير المحدودة في فضاء هيلبرت، مع التركيز على المؤثرات ذات الطيف النقطي البحت. يتم تقديم تعريفات لفضاءات سوبوليف المختلفة وتوضيح كيفية استخدامها في حل مسائل القيم الحدية. يتم إثبات أن المؤثرات المستخدمة هي مؤثرات تفاضلية موجبة محددة وذات طيف نقطي بحت، ويتم تقديم الحلول باستخدام سلاسل فورييه. يتم تقديم مبرهنات ونتائج تثبت وجود وحيدية الحلول لهذه المسائل في فضاءات سوبوليف. يتم الاعتماد على مراجع متعددة في مجال التحليل الوظيفي وفضاءات سوبوليف والمعادلات التفاضلية.
Critical review
دراسة نقدية: يعتبر هذا البحث إضافة قيمة إلى مجال حل مسائل القيم الحدية في فضاءات سوبوليف، حيث يقدم حلولاً جديدة باستخدام سلاسل فورييه. ومع ذلك، يمكن تقديم بعض الملاحظات النقدية. أولاً، البحث يعتمد بشكل كبير على المراجع السابقة دون تقديم تطبيقات عملية واضحة لهذه الحلول في مجالات أخرى. ثانياً، قد يكون من المفيد تقديم أمثلة عددية توضيحية لتبسيط الفهم للقارئ. ثالثاً، يمكن تحسين العرض الرياضي لبعض المعادلات لتكون أكثر وضوحاً وسهولة في المتابعة. على الرغم من هذه النقاط، يظل البحث ذو قيمة علمية عالية ويقدم إسهامات مهمة في مجال التحليل الوظيفي وفضاءات سوبوليف.
Questions related to the research
-
ما هي المسألة الرئيسية التي يتناولها البحث؟
يتناول البحث حل مسائل القيم الحدية ذات الرتب غير الصحيحة في فضاءات سوبوليف باستخدام سلاسل فورييه.
-
ما هي الأدوات الرياضية المستخدمة في البحث؟
يستخدم البحث نظرية التوزيعات، فضاءات سوبوليف، والنظرية الطيفية للمؤثرات غير المحدودة في فضاء هيلبرت.
-
ما هي النتائج الرئيسية التي توصل إليها البحث؟
تم إثبات وجود وحيدية الحلول لمشاكل القيم الحدية في فضاءات سوبوليف باستخدام سلاسل فورييه، وتم تحديد أن المؤثرات المستخدمة هي مؤثرات تفاضلية موجبة محددة وذات طيف نقطي بحت.
-
ما هي المراجع الأساسية التي اعتمد عليها البحث؟
اعتمد البحث على مراجع متعددة في مجال التحليل الوظيفي وفضاءات سوبوليف والمعادلات التفاضلية، مثل كتب Adams وBerzis وHutson وKrall وKreyszig وTriebel وAgarwal.
References used
Adams, R.A.; Fournier,J.F.(2003):Sobolev Spaces. Academic Press, Elsevier Ltd
Berzis, H. (2011): Functional Analysis, Sobolev Spaces, and Partial Differential Equations. Springer Science+ Business Media
Hutson, V.; Pym, J.S. (2005): Application of Functional Analysis and Operator Theory, Elsevier, Amsterdam
In this paper, spline collocation method is considered for solving two forms of problems. The first form is general linear sixth-order boundary-value problem (BVP), and the second form is nonlinear sixth-order initial value problem (IVP). The existen
In this paper, a spline collocation method is developed for finding numerical solutions of general linear eighth-order boundary-value problems (BVPs) and nonlinear eighth-order initial value problems (IVPs). The presented collocation method affords t
In this paper, we use polynomial splines of eleventh degree with three collocation
points to develop a method for computing approximations to the solution and its
derivatives up to ninth order for general linear and nonlinear ninth-order boundary-v
In this paper, we develop spline collocation technique for the numerical solution of
general twelfth-order linear boundary value problems (BVPs). This technique based on
polynomial splines from order sixteenth as well as five collocation points at
Most of mathematical physics problems can be translated into solve one
partial differential equation or more with specific initial conditions and
boundary conditions. This is called the boundary value problem for the
differential equations.
This