Do you want to publish a course? Click here

The Study of Stability of Liner Differential Equations system with delay by Liapunov’s Second Method

دراسة استقرار حل جملة معادلات تفاضلية ذات تأخر زمني بمعاملات متغيرة باستخدام مبدأ ليبانوف الثاني

1576   2   60   0 ( 0 )
 Publication date 2016
  fields Mathematics
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this paper we used Liapunov’s Second Method for study of stability of differential equations system with delay.

References used
Burton, T. A. and Hatvani, L.,1989-Stability theorems for non autonomous functional differential equations by Liapunov functional, Tohoku Math. J. 41, 65-104
Burton, T. A.1994-An example on the asymptotic stability for functional differential equations, Nonlinear Anal. Vol.8,No.3,365- 368
rate research

Read More

تتضمن الرسالة أربعة فصول : الفصل الأول : ويتضمن بعض المفاهيم والتعاريف والمبرهنات التي تتعلق بالبحث. الفصل الثاني : دراسة استقرار جملة معادلات تفاضلية خطية لا توقفيه ذات تأخير زمني . الفصل الثالث :دراسة استقرار حل جملة المعادلات التفاضلية الخطية ذات تأخير زمني . الفصل الرابع : دراسة استقرار حل المعادلات التفاضلية لا توقفية ذات تأخر زمني باستخدام نظرية النقطة الثابتة
Defining some of the essential definitions and conceptions. Stochastic matrix. Stability. Approximate stability. Approximate stability in the quadratic middle. Formula of a system of unsettled non stationary stochastic differential equations. Formula of a generalized system of unsettled non- stationary stochastic differential equations. Foundations of a system of differential equations that divines the partial moments of the second order. Foundations of a system of differential equations that divines matrices of Lyapunov's functions. The necessary and sufficient conditions formatrisses of Lyapunov's functions to assure the stability of the studied system's solution approximately in the quadratic middle.
In this paper , we will discuss the way of construction of lyapunov function for some of linear stochastic difference equations We will use the general method of constructions of lyapunov function for stochastic difference equations and we will ob tain a sufficient conditions of asymptotic mean square stability of zero solution for one of linear stochastic difference equations with constant coefficient ,By using of some main theorems and definitions for asymptotic mean square stability for linear stochastic difference equations .
In this paper, spline technique with five collocation parameters for finding the numerical solutions of delay differential equations (DDEs) is introduced. The presented method is based on the approximating the exact solution by C4-Hermite spline i nterpolation and as well as five collocation points at every subinterval of DDE.The study shows that the spline solution of purposed technique is existent and unique and has strongly stable for some collocation parameters. Moreover, this method if applied to test problem will be consistent, p-stable and convergent from order nine .In addition ,it possesses unbounded region of p-stability. Numerical experiments for four examples are given to verify the reliability and efficiency of the purposed technique. Comparisons show that numerical results of our method are more accurate than other methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا