Do you want to publish a course? Click here

Prediction of tobacco crop production in Syria using )ARIMA( model analysis

التنبؤ بإنتاج محصول التبغ في سورية باستخدام تحليل نماذج (ARIMA)

1303   2   0   0.0 ( 0 )
 Publication date 2020
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The objective of the research is to predict the production and area of tobacco production in the Syrian Arab Republic for the period (2019-2027) using ARIMA analysis, based on time series data on production and cultivated area for the period 1975-2017.The research was based primarily on the secondary data of FAO, based on the descriptive method of analysis in both descriptive and quantitative terms, using the linear analysis of the time series regression function in its various mathematical images, as well as using Box-Jenkins method to predict future values of production The maximal Likelihood Estimation (MLE) for Autoregressive Integrated Moving Average (ARIMA) models.Results showed that the best predictive models of production and cultivated area during the required period were ARIMA (2.2,2)According to the selected model, the production volume in 2019 will reach 9130.9 tons between a minimum of 3056.9 tons and a maximum of 15205.0 tons, and it will continue to decline until 2025 to reach 920.0 tons and increase again in 2026 to 6766.4 tons between a minimum of 6579.3 tons and a maximum of 7932.0 tons, and then returns to decline again in the year (2027) to 2281.4 tons.The cultivated area will reach 2,736.9 hectares in the year 2019 to a minimum of 3010.4 ha and a maximum of 11,236.5 ha. It will continue to decline until 2088 to reach 3588.5 hectares. This will increase again in 2026 to 4966.7 hectares between a minimum of 4553.5 ha and maximum of 10487.0 hectares and it is expected to decline in 2027 to reach 3830.5 hectares between a minimum of 3623.6 and maximum of 10284.5 hectares.


Artificial intelligence review:
Research summary
تهدف هذه الدراسة إلى التنبؤ بمساحة وإنتاج محصول التبغ في الجمهورية العربية السورية للفترة ما بين 2019-2027 باستخدام نماذج ARIMA لتحليل السلاسل الزمنية. اعتمد الباحثون على بيانات منظمة الأغذية والزراعة العالمية (FAO) للفترة ما بين 1975-2017. استخدم الباحثون أسلوب بوكس جينكنز (Box-Jenkins) لتحديد النماذج التنبؤية المثلى. أظهرت النتائج أن أفضل نموذج للتنبؤ بالإنتاج والمساحة المزروعة هو ARIMA (2,2,2). وفقًا لهذا النموذج، من المتوقع أن يصل حجم الإنتاج في عام 2019 إلى 9130.9 طن، وسيستمر في الانخفاض حتى عام 2025 ليصل إلى 920.0 طن، ثم يرتفع مرة أخرى في عام 2026 إلى 6766.4 طن، ليعود للانخفاض في عام 2027 إلى 2281.4 طن. أما المساحة المزروعة، فمن المتوقع أن تصل في عام 2019 إلى 7136.9 هكتار، وستستمر في الانخفاض حتى عام 2025 لتصل إلى 3588.5 هكتار، ثم ترتفع مرة أخرى في عام 2026 إلى 4966.7 هكتار، لتعود للانخفاض في عام 2027 إلى 3830.5 هكتار. توصي الدراسة بأهمية البحث عن أسباب انخفاض الإنتاج والمساحة المزروعة ومعالجتها، وتفعيل دور الوحدات الإرشادية لتقديم الدعم للمزارعين.
Critical review
دراسة نقدية: تعتبر هذه الدراسة مهمة ومفيدة في مجال التنبؤ بالإنتاج الزراعي، خاصة لمحصول ذي أهمية اقتصادية مثل التبغ في سوريا. ومع ذلك، هناك بعض النقاط التي يمكن تحسينها. أولاً، الاعتماد على بيانات FAO فقط قد لا يكون كافيًا، وكان من الممكن تضمين بيانات محلية إضافية للحصول على صورة أكثر دقة. ثانيًا، لم يتم التطرق إلى العوامل الخارجية التي قد تؤثر على الإنتاج مثل التغيرات المناخية والسياسية. ثالثًا، كان من الممكن تقديم توصيات أكثر تفصيلًا حول كيفية معالجة انخفاض الإنتاج والمساحة المزروعة. وأخيرًا، على الرغم من أن نماذج ARIMA تعتبر قوية، إلا أن استخدام نماذج إضافية قد يعزز من دقة التنبؤات.
Questions related to the research
  1. ما هو الهدف الرئيسي من الدراسة؟

    الهدف الرئيسي من الدراسة هو التنبؤ بمساحة وإنتاج محصول التبغ في سوريا للفترة ما بين 2019-2027 باستخدام نماذج ARIMA لتحليل السلاسل الزمنية.

  2. ما هي البيانات التي اعتمدت عليها الدراسة؟

    اعتمدت الدراسة على بيانات منظمة الأغذية والزراعة العالمية (FAO) للفترة ما بين 1975-2017.

  3. ما هي النتائج الرئيسية التي توصلت إليها الدراسة؟

    توصلت الدراسة إلى أن أفضل نموذج للتنبؤ بالإنتاج والمساحة المزروعة هو ARIMA (2,2,2). من المتوقع أن ينخفض حجم الإنتاج حتى عام 2025 ثم يرتفع في عام 2026، بينما ستنخفض المساحة المزروعة حتى عام 2025 ثم ترتفع في عام 2026.

  4. ما هي التوصيات التي قدمتها الدراسة؟

    توصي الدراسة بالبحث عن أسباب انخفاض الإنتاج والمساحة المزروعة ومعالجتها، وتفعيل دور الوحدات الإرشادية لتقديم الدعم للمزارعين.


References used
Arsham,H.(1996)."Time Series Analysis and Forecasting Techniques" http: // obeli.jde.aca.mmu.ac.uk
Box,G.P.and G.M Jenkins,.(1976)."Time series and forecasting and control", Re vised Edition Holden-Day lnc. San Francisco
rate research

Read More

This study aims at develop the model to predict the production of wheat in Syria which is based on the model State Space. The study to develop a model and predict the production of wheat in the Syrian Arab Republic until 2016. As it turns out to c ompare the model State Space with the models used in the analysis of time series priority model State Space for modeling wheat production in Syria. ...
The study aims at comparing ARIMA models and the exponential smoothing method in forecasting. This study also highlights the special and basic concepts of ARIMA model and the exponential smoothing method. The comparison focuses on the ability of both methods to forecast the time series with a narrow range of one point to another and the time series with a long range of one point to another, and also on the different lengths of the forecasting periods. Currency exchange rates of Shekel to American dollar were used to make this comparison in the period between 25/1/2010 to 22/10/2016. In addition, weekly gold prices were considered in the period between 10/1/2010 to 23/10/2016. RMSE standard was used in order to compare between both methods. In this study, the researcher came up with the conclusion that ARIMA models give a better forecasting for the time series with a long range of one point to another and for long term forecasting, but cannot produce a better forecasting for time series with a narrow range of one point to another as in currency exchange prices. On the contrary, exponential smoothing method can give better forecasting for Exchange Rates that has a narrow range of one point to another for its time series, while it cannot give better forecasting for long term forecasting periods
هدف البحث تحليل سياسات دعم الإنتاج الزراعي لمحصول القطن في محافظة الحسكة إل التركيز على أثر إحداث صندوق دعم الإنتاج الزراعي في انتاج محصول القطن وتحسين دخل المزارعين واستمراريتهم في العمل الزراعي.
Contemporary tobacco-related studies are mostly concerned with a single social media platform while missing out on a broader audience. Moreover, they are heavily reliant on labeled datasets, which are expensive to make. In this work, we explore senti ment and product identification on tobacco-related text from two social media platforms. We release SentiSmoke-Twitter and SentiSmoke-Reddit datasets, along with a comprehensive annotation schema for identifying tobacco products' sentiment. We then perform benchmarking text classification experiments using state-of-the-art models, including BERT, RoBERTa, and DistilBERT. Our experiments show F1 scores as high as 0.72 for sentiment identification in the Twitter dataset, 0.46 for sentiment identification, and 0.57 for product identification using semi-supervised learning for Reddit.
This study considers the efficiency of irrigation water usage in the economic and productive aspects of peanuts crop in Syrian lands, in particular: mid, coastal and eastern lands, in terms of arithmetic means during the period of 2010-2012.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا