Do you want to publish a course? Click here

The Neutrosophic Exponential Distribution

التوزيع الأسي النيتروسوفيكي

1356   3   13   0.0 ( 0 )
 Publication date 2018
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

We present in this paper the neutrosophic exponential distribution, which is an extension of the classical exponential distribution according to the neutrosophic logic (a new non-classical logic which was founded by the American philosopher and mathematical Florentin Smarandache, which he introduced as a generalization of fuzzy logic especially the intuitionistic fuzzy logic), so that it can handle all the data that it is not precisely defined.


Artificial intelligence review:
Research summary
يقدم هذا البحث توزيعًا جديدًا يسمى التوزيع الأسي النيتروسوفيكي، وهو امتداد للتوزيع الأسي الكلاسيكي باستخدام منطق النيتروسوفيك. منطق النيتروسوفيك هو منطق غير كلاسيكي أسسه الفيلسوف والرياضي فلورنتن سمارانداكه، ويهدف إلى التعامل مع البيانات غير المحددة بدقة. يوضح البحث أن وجود اللاتحديد في البيانات يؤثر على قيمة الاحتمال النهائي، وبالتالي لا يمكن تجاهل هذه القيم للحصول على نتائج دقيقة. يتناول البحث تعريف التوزيع الأسي النيتروسوفيكي وخصائصه، ويقدم أمثلة عملية لتوضيح كيفية تطبيقه. كما يسلط الضوء على أهمية هذا التوزيع في مختلف المجالات مثل الطب والفيزياء ونظم المعلومات، ويشجع الباحثين على استخدام منطق النيتروسوفيك في دراساتهم لتحقيق نتائج أكثر دقة وواقعية.
Critical review
دراسة نقدية: يعد البحث خطوة مهمة نحو توسيع نطاق استخدام التوزيعات الاحتمالية لتشمل البيانات غير المحددة بدقة، وهو ما يعكس تطورًا هامًا في مجال الإحصاء الرياضي. ومع ذلك، قد يكون من المفيد تقديم المزيد من الأمثلة العملية والتطبيقات الواقعية لتوضيح الفوائد العملية لهذا التوزيع الجديد. كما أن البحث يمكن أن يستفيد من مقارنة أعمق بين التوزيع الأسي الكلاسيكي والتوزيع الأسي النيتروسوفيكي لتوضيح الفروق والفوائد بشكل أوضح. بالإضافة إلى ذلك، يمكن تعزيز البحث بمزيد من الدراسات التجريبية لتأكيد النتائج وتوسيع نطاق تطبيقها في مجالات أخرى.
Questions related to the research
  1. ما هو التوزيع الأسي النيتروسوفيكي؟

    التوزيع الأسي النيتروسوفيكي هو امتداد للتوزيع الأسي الكلاسيكي باستخدام منطق النيتروسوفيك، الذي يمكنه التعامل مع البيانات غير المحددة بدقة.

  2. ما هي أهمية استخدام منطق النيتروسوفيك في التوزيعات الاحتمالية؟

    يسمح منطق النيتروسوفيك بالتعامل مع البيانات غير المحددة بدقة، مما يؤدي إلى نتائج أكثر دقة وواقعية في التوزيعات الاحتمالية، وهو ما يعزز من دقة القرارات المستندة إلى هذه التوزيعات.

  3. كيف يؤثر وجود اللاتحديد في البيانات على قيمة الاحتمال النهائي؟

    وجود اللاتحديد في البيانات يؤثر على قيمة الاحتمال النهائي، حيث لا يمكن تجاهل القيم غير المحددة للحصول على نتائج دقيقة، وبالتالي يجب تضمينها في إطار الدراسة.

  4. ما هي المجالات التي يمكن أن تستفيد من تطبيق التوزيع الأسي النيتروسوفيكي؟

    يمكن تطبيق التوزيع الأسي النيتروسوفيكي في مجالات متعددة مثل الطب والفيزياء ونظم المعلومات وعلوم الحاسب، حيث يمكنه التعامل مع البيانات غير المحددة بدقة وتحقيق نتائج أكثر دقة وواقعية.


References used
Osman, Salah and Smarandache, Florentin. Arab Philosophy from a Neutrosophy Perspective, Al Ma'aref Establishment, Alexandria, 2007
A. A. Salama and F. Smarandache. Neutrosophic Crisp Set Theory, Education Publishing, Columbus, 2015
A. A. Salama and F. Smarandache. Neutrosophic Crisp Probability Theory. Critical Review. Volume XII, 2016
rate research

Read More

Today, MANET networks have attracted the attention of many researchers in the field of communications and networks because of the ease of establishing such networks and their wide spread in the various scientific and applied fields. The researchers have proposed many routing protocols in these networks. This is because the goal of the development process is to make these networks more secure and stable because they are highly vulnerable to penetration by any other node located in the perimeter of the network because the security factors are weak. These protocols are categorized according to its strategy to three types are the proactive class, which relies on the transmission of control messages over the network to update the routes between any two nodes, and the reactive class, which depends on discovering the route when needed, without broadcasting of control messages across network , And the hybrid type, which combines the two classes, that divides the network into clusters where the nodes interconnections within the cluster depends on the interactive method, while the transmission between two nodes that belong to different clusters is depend on proactive method. In this research, the MANET network was simulated by subjecting the packet generation process to an exponential probability distribution with the change of the value of the (α) parameter in order to obtain the best performance when the number of nodes changed taking into account the parameters of Throughput, load and delay.
The study aims at comparing ARIMA models and the exponential smoothing method in forecasting. This study also highlights the special and basic concepts of ARIMA model and the exponential smoothing method. The comparison focuses on the ability of both methods to forecast the time series with a narrow range of one point to another and the time series with a long range of one point to another, and also on the different lengths of the forecasting periods. Currency exchange rates of Shekel to American dollar were used to make this comparison in the period between 25/1/2010 to 22/10/2016. In addition, weekly gold prices were considered in the period between 10/1/2010 to 23/10/2016. RMSE standard was used in order to compare between both methods. In this study, the researcher came up with the conclusion that ARIMA models give a better forecasting for the time series with a long range of one point to another and for long term forecasting, but cannot produce a better forecasting for time series with a narrow range of one point to another as in currency exchange prices. On the contrary, exponential smoothing method can give better forecasting for Exchange Rates that has a narrow range of one point to another for its time series, while it cannot give better forecasting for long term forecasting periods
Reactive power compensation in distribution networks is one of the most important economic and environmental issues in power system studies. In this paper the following points are investigated: · The characteristics of the most developed equipment used for reactive power compensation. · Equations used in ETAP program calculation · OCP is part of ETAP program which gives us the possibility to determine optimal reactive power sizing and placement in distribution networks in order to achieve optimal Power loss and distribution power system enhancement. · ETAP program is applied on a part of Damascus suburb electrical network which was simulated by its real parameters and the positive economical and technical results have been clarified.
Pretrained Transformers achieve remarkable performance when training and test data are from the same distribution. However, in real-world scenarios, the model often faces out-of-distribution (OOD) instances that can cause severe semantic shift proble ms at inference time. Therefore, in practice, a reliable model should identify such instances, and then either reject them during inference or pass them over to models that handle another distribution. In this paper, we develop an unsupervised OOD detection method, in which only the in-distribution (ID) data are used in training. We propose to fine-tune the Transformers with a contrastive loss, which improves the compactness of representations, such that OOD instances can be better differentiated from ID ones. These OOD instances can then be accurately detected using the Mahalanobis distance in the model's penultimate layer. We experiment with comprehensive settings and achieve near-perfect OOD detection performance, outperforming baselines drastically. We further investigate the rationales behind the improvement, finding that more compact representations through margin-based contrastive learning bring the improvement. We release our code to the community for future research.
While neural networks are ubiquitous in state-of-the-art semantic parsers, it has been shown that most standard models suffer from dramatic performance losses when faced with compositionally out-of-distribution (OOD) data. Recently several methods ha ve been proposed to improve compositional generalization in semantic parsing. In this work we instead focus on the problem of detecting compositionally OOD examples with neural semantic parsers, which, to the best of our knowledge, has not been investigated before. We investigate several strong yet simple methods for OOD detection based on predictive uncertainty. The experimental results demonstrate that these techniques perform well on the standard SCAN and CFQ datasets. Moreover, we show that OOD detection can be further improved by using a heterogeneous ensemble.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا