Do you want to publish a course? Click here

Proposed method to analysis and predict time series with a regular cyclical factor (Olive production in Syria)

أسلوب مقترح للتنبؤ بالسلاسل الزمنية ذات الدور المنتظم (إنتاج الزيتون في سورية)

1903   0   51   0 ( 0 )
 Publication date 2012
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Olive cultivation is witnessing a remarkable development in the Syrian Arab Republic in terms of area cultivated and the number of trees and the quality of cultivated varieties of olives. The result of this evolution Syria occupied first place in the Arab and olive production ranked fifth in the world after Spain, Italy, Greece and Turkey, by passing Tunisia, which occupies the first place was an Arab. Olive production as dependent variable is affected by much of the factors which can be considered independent: The number of trees and age of tree and tree type and amount of rainfall, temperature and location of olive cultivation…… However, the most important influence on the production of olive is a phenomenon alternate fruit bearing in fruit trees.This lead to the affected by a time series of olive production, in addition to the regular periodic of other factors, the general trend and random factors. This study aims to provide a new method for modeling and analysis of time series with a regular cyclical factors and its application to olive production in the Syrian Arab Republic. The study to develop an econometric model based on the proposed new method can be used to predict the production of olive in Syria, and predict the size of production until 2016. ...


Artificial intelligence review:
Research summary
تتناول هذه الدراسة تحليل السلاسل الزمنية لإنتاج الزيتون في سوريا، حيث تشهد زراعة الزيتون تطورًا ملحوظًا من حيث المساحة المزروعة وعدد الأشجار ونوعية الأصناف. تهدف الدراسة إلى تقديم أسلوب جديد لنمذجة السلاسل الزمنية ذات الدور المنتظم وتحليلها، مع التركيز على ظاهرة المعاومة التي تؤثر بشكل كبير على إنتاج الزيتون. استخدم الباحثان منهجًا وصفيًا تحليليًا، معتمدين على بيانات السلسلة الزمنية لحجم إنتاج الزيتون في سوريا، واستخدموا الحزمة البرمجية SPSS لتحليلها. خلصت الدراسة إلى وضع نموذج قياسي يمكن استخدامه للتنبؤ بحجم إنتاج الزيتون حتى عام 2016، وأثبتت أفضلية هذا النموذج على الأساليب التقليدية في تحليل السلاسل الزمنية.
Critical review
تقدم الدراسة إسهامًا مهمًا في مجال تحليل السلاسل الزمنية لإنتاج الزيتون في سوريا، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، كان من الممكن أن تكون الدراسة أكثر شمولية إذا تناولت تأثير العوامل الاقتصادية والسياسية على إنتاج الزيتون. ثانيًا، رغم استخدام الحزمة البرمجية SPSS، إلا أن الدراسة لم تذكر تفاصيل كافية حول كيفية معالجة البيانات المفقودة أو غير المكتملة. ثالثًا، كان من المفيد تضمين مقارنة مع دراسات مشابهة في دول أخرى لتعزيز النتائج. وأخيرًا، كان من الممكن أن تكون التوصيات أكثر تحديدًا وقابلة للتنفيذ من قبل الجهات المعنية.
Questions related to the research
  1. ما الهدف الرئيسي من الدراسة؟

    الهدف الرئيسي من الدراسة هو تقديم أسلوب جديد لنمذجة السلاسل الزمنية ذات الدور المنتظم وتحليلها، وتطبيقها على إنتاج الزيتون في سوريا.

  2. ما هي الظاهرة التي تؤثر بشكل كبير على إنتاج الزيتون؟

    الظاهرة التي تؤثر بشكل كبير على إنتاج الزيتون هي ظاهرة المعاومة، أو تبادل الحمل التمري، التي تؤدي إلى تأثر سلسلة إنتاج الزيتون بعوامل دورية منتظمة.

  3. ما هي الحزمة البرمجية المستخدمة في تحليل البيانات؟

    الحزمة البرمجية المستخدمة في تحليل البيانات هي SPSS.

  4. ما هي الفترة الزمنية التي تغطيها بيانات السلسلة الزمنية المستخدمة في الدراسة؟

    الفترة الزمنية التي تغطيها بيانات السلسلة الزمنية المستخدمة في الدراسة تمتد من عام 1976 إلى عام 2010.


References used
Baltagi B.H. (2008) "Econometrics". Springer-Verlag Berlin
BARDSEN G. and others (2005) " the econometrics of macroeconomic modelling". Oxford University Press Inc., New York
BARRETO H. and HOWLAND F.M. (2006) "INTRODUCTORY ECONOMETRICS". cambridge university press
rate research

Read More

The study aims at comparing ARIMA models and the exponential smoothing method in forecasting. This study also highlights the special and basic concepts of ARIMA model and the exponential smoothing method. The comparison focuses on the ability of both methods to forecast the time series with a narrow range of one point to another and the time series with a long range of one point to another, and also on the different lengths of the forecasting periods. Currency exchange rates of Shekel to American dollar were used to make this comparison in the period between 25/1/2010 to 22/10/2016. In addition, weekly gold prices were considered in the period between 10/1/2010 to 23/10/2016. RMSE standard was used in order to compare between both methods. In this study, the researcher came up with the conclusion that ARIMA models give a better forecasting for the time series with a long range of one point to another and for long term forecasting, but cannot produce a better forecasting for time series with a narrow range of one point to another as in currency exchange prices. On the contrary, exponential smoothing method can give better forecasting for Exchange Rates that has a narrow range of one point to another for its time series, while it cannot give better forecasting for long term forecasting periods
The main objective of this research was the reality of irrigated olive cultivation and analysis of production costs in the eastern region of the province of Homs and identify the most important influence on profit productive elements, The initial field data collection of 2014 and 2015.
حظيت نمذجة وتوقع السلاسل الزمنية بأهمية كبيرة في العديد من المجالات التطبيقية كالتنبؤ بالطقس وأسعار العملات ومعدلات استهلاك الوقود والكهرباء، إن توقع السلاسل الزمنية من شأنه أن يزود المنظمات والشركات بالمعلومات الضرورية لاتخاذ القرارات الهامة، وبسبب أهمية هذا المجال من الناحية التطبيقية فإن الكثير من الأعمال البحثية التي جرت ضمنه خلال السنوات الماضية، إضافةً إلى العدد الكبير من النماذج والخوارزميات التي تم اقتراحها في أدب البحث العلمي والتي كان هدفها تحسين كل من الدقة والكفاءة في نمذجة وتوقع السلاسل الزمنية.
The study and design of water dams depend essential on prediction of water volumes or future predicted in rivers, by using the time series analysis of the historical measurements. The research aims to make statistical study of monthly water volume s incoming in AL-Aroos River in Syrian coastal and future prediction of these volumes. And the Box-Jenkins models is adopt to analysis the time series data, because of its high accuracy. We attend the monthly water volumes for 15 years. And after doing the wanted tests on model residuals we found that the best model to represent the data is SARIMA(0,1,2) (1,2,1)12 , and after dividing the data to 14 years to build the model and one year to test it , and depending on the smallest of weighted mean of criteria RMSE, MAP, MAE,. The best predicted model is SARIMA (1,1,0) (0,1,1)12 and the model give the nearest predicted of measured data actually.
The analysis of time series data is one of the most important statistical topics, usually focuses on forecasting the future behavior of the series at a certain time for certain purposes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا