Do you want to publish a course? Click here

This search includes studying of automated mobile cranes to reduce incidence of inversing which often happens due to payload swaying that requires controlling system at the crane's site to reach Target position and another controlling system to red uce payload swaying as possible while the crane is in motion. Despite the development of controlling systems that adjust the operation and functions of these cranes, the repetition of accidental tips in these cranes lead us to look for hybrid fuzzy controlling system comparing it with PID controlling system. So, it will improve the performance of these cranes through the reduction of payload swaying and precise control of crane’s position. The PID controller and Hybrid Fuzzy PID controller were simulated using Matlab Software and the results were compared to reach the best controlling system for the crane.
The re-use of return air in central conditioning systems is one of the most important procedures for saving power consumption. However, the requested fresh air of the people existed within the conditioning space imposes determining the number of ti mes to be used. This research aims to link the work of the central conditioning system (heating) of a facility with the number of people existing within this facility by modifying the ratio of mixed fresh air and return air to save the electrical power consumption. Also, to raise the temperature of the mixture air by controlling the flow of hot water continuously rather than using on-off technique. As well as, to respond to any change in the number of people and get rid of repeated machine starting. Our research has been done by using specialized physical model consisted of test room, heat and movement sensors, pump, water tank, heat exchanger and air mixing blades. These devices are controlled by microcontroller type PIC16F877A. The experimentally obtained results showed the ability of controlling the amount of return air depending on the number of people and controlling the speed of the pump continuously providing a saving of electrical energy consumption up to 68% compared with the case of full speed.
This paper presents a robust cerebellar model articulation controller (CMAC) for quadcopter system. We simulate this systems by using Matlab and Simulink, and we find that this control guarantees good balance performance and acceptable robust per formance. And we compare our CMAC with other systems using CMAC but in structures differ of our CMAC structure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا