Do you want to publish a course? Click here

Human conversations naturally evolve around different topics and fluently move between them. In research on dialog systems, the ability to actively and smoothly transition to new topics is often ignored. In this paper we introduce TIAGE, a new topic- shift aware dialog benchmark constructed utilizing human annotations on topic shifts. Based on TIAGE, we introduce three tasks to investigate different scenarios of topic-shift modeling in dialog settings: topic-shift detection, topic-shift triggered response generation and topic-aware dialog generation. Experiments on these tasks show that the topic-shift signals in TIAGE are useful for topic-shift response generation. On the other hand, dialog systems still struggle to decide when to change topic. This indicates further research is needed in topic-shift aware dialog modeling.
Large web-crawled corpora represent an excellent resource for improving the performance of Neural Machine Translation (NMT) systems across several language pairs. However, since these corpora are typically extremely noisy, their use is fairly limited . Current approaches to deal with this problem mainly focus on filtering using heuristics or single features such as language model scores or bi-lingual similarity. This work presents an alternative approach which learns weights for multiple sentence-level features. These feature weights which are optimized directly for the task of improving translation performance, are used to score and filter sentences in the noisy corpora more effectively. We provide results of applying this technique to building NMT systems using the Paracrawl corpus for Estonian-English and show that it beats strong single feature baselines and hand designed combinations. Additionally, we analyze the sensitivity of this method to different types of noise and explore if the learned weights generalize to other language pairs using the Maltese-English Paracrawl corpus.
Dialogue state tracking models play an important role in a task-oriented dialogue system. However, most of them model the slot types conditionally independently given the input. We discover that it may cause the model to be confused by slot types tha t share the same data type. To mitigate this issue, we propose TripPy-MRF and TripPy-LSTM that models the slots jointly. Our results show that they are able to alleviate the confusion mentioned above, and they push the state-of-the-art on dataset MultiWoz 2.1 from 58.7 to 61.3.
A crucial difference between single- and multi-document summarization is how salient content manifests itself in the document(s). While such content may appear at the beginning of a single document, essential information is frequently reiterated in a set of documents related to a particular topic, resulting in an endorsement effect that increases information salience. In this paper, we model the cross-document endorsement effect and its utilization in multiple document summarization. Our method generates a synopsis from each document, which serves as an endorser to identify salient content from other documents. Strongly endorsed text segments are used to enrich a neural encoder-decoder model to consolidate them into an abstractive summary. The method has a great potential to learn from fewer examples to identify salient content, which alleviates the need for costly retraining when the set of documents is dynamically adjusted. Through extensive experiments on benchmark multi-document summarization datasets, we demonstrate the effectiveness of our proposed method over strong published baselines. Finally, we shed light on future research directions and discuss broader challenges of this task using a case study.
Large-scale conversation models are turning to leveraging external knowledge to improve the factual accuracy in response generation. Considering the infeasibility to annotate the external knowledge for large-scale dialogue corpora, it is desirable to learn the knowledge selection and response generation in an unsupervised manner. In this paper, we propose PLATO-KAG (Knowledge-Augmented Generation), an unsupervised learning approach for end-to-end knowledge-grounded conversation modeling. For each dialogue context, the top-k relevant knowledge elements are selected and then employed in knowledge-grounded response generation. The two components of knowledge selection and response generation are optimized jointly and effectively under a balanced objective. Experimental results on two publicly available datasets validate the superiority of PLATO-KAG.
With the emergence of the COVID-19 pandemic, the political and the medical aspects of disinformation merged as the problem got elevated to a whole new level to become the first global infodemic. Fighting this infodemic has been declared one of the mo st important focus areas of the World Health Organization, with dangers ranging from promoting fake cures, rumors, and conspiracy theories to spreading xenophobia and panic. Addressing the issue requires solving a number of challenging problems such as identifying messages containing claims, determining their check-worthiness and factuality, and their potential to do harm as well as the nature of that harm, to mention just a few. To address this gap, we release a large dataset of 16K manually annotated tweets for fine-grained disinformation analysis that (i) focuses on COVID-19, (ii) combines the perspectives and the interests of journalists, fact-checkers, social media platforms, policy makers, and society, and (iii) covers Arabic, Bulgarian, Dutch, and English. Finally, we show strong evaluation results using pretrained Transformers, thus confirming the practical utility of the dataset in monolingual vs. multilingual, and single task vs. multitask settings.
Storytelling, whether via fables, news reports, documentaries, or memoirs, can be thought of as the communication of interesting and related events that, taken together, form a concrete process. It is desirable to extract the event chains that repres ent such processes. However, this extraction remains a challenging problem. We posit that this is due to the nature of the texts from which chains are discovered. Natural language text interleaves a narrative of concrete, salient events with background information, contextualization, opinion, and other elements that are important for a variety of necessary discourse and pragmatics acts but are not part of the principal chain of events being communicated. We introduce methods for extracting this principal chain from natural language text, by filtering away non-salient events and supportive sentences. We demonstrate the effectiveness of our methods at isolating critical event chains by comparing their effect on downstream tasks. We show that by pre-training large language models on our extracted chains, we obtain improvements in two tasks that benefit from a clear understanding of event chains: narrative prediction and event-based temporal question answering. The demonstrated improvements and ablative studies confirm that our extraction method isolates critical event chains.
We introduce a new pretraining approach geared for multi-document language modeling, incorporating two key ideas into the masked language modeling self-supervised objective. First, instead of considering documents in isolation, we pretrain over sets of multiple related documents, encouraging the model to learn cross-document relationships. Second, we improve over recent long-range transformers by introducing dynamic global attention that has access to the entire input to predict masked tokens. We release CDLM (Cross-Document Language Model), a new general language model for multi-document setting that can be easily applied to downstream tasks. Our extensive analysis shows that both ideas are essential for the success of CDLM, and work in synergy to set new state-of-the-art results for several multi-text tasks.
Recently, sponsored search has become one of the most lucrative channels for marketing. As the fundamental basis of sponsored search, relevance modeling has attracted increasing attention due to the tremendous practical value. Most existing methods s olely rely on the query-keyword pairs. However, keywords are usually short texts with scarce semantic information, which may not precisely reflect the underlying advertising intents. In this paper, we investigate the novel problem of advertiser-aware relevance modeling, which leverages the advertisers' information to bridge the gap between the search intents and advertising purposes. Our motivation lies in incorporating the unsupervised bidding behaviors as the complementary graphs to learn desirable advertiser representations. We further propose a Bidding-Graph augmented Triple-based Relevance model BGTR with three towers to deeply fuse the bidding graphs and semantic textual data. Empirically, we evaluate the BGTR model over a large industry dataset, and the experimental results consistently demonstrate its superiority.
An ideal integration of autonomous agents in a human world implies that they are able to collaborate on human terms. In particular, theory of mind plays an important role in maintaining common ground during human collaboration and communication. To e nable theory of mind modeling in situated interactions, we introduce a fine-grained dataset of collaborative tasks performed by pairs of human subjects in the 3D virtual blocks world of Minecraft. It provides information that captures partners' beliefs of the world and of each other as an interaction unfolds, bringing abundant opportunities to study human collaborative behaviors in situated language communication. As a first step towards our goal of developing embodied AI agents able to infer belief states of collaborative partners in situ, we build and present results on computational models for several theory of mind tasks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا