Do you want to publish a course? Click here

Performing Cerebellar Model Articulation Controller to enhance the response of quadcopter system

إنجاز متحكم ذو نموذج مخيخي لتحسين استجابة نظام رباعية المحرك

1585   0   51   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This paper presents a robust cerebellar model articulation controller (CMAC) for quadcopter system. We simulate this systems by using Matlab and Simulink, and we find that this control guarantees good balance performance and acceptable robust performance. And we compare our CMAC with other systems using CMAC but in structures differ of our CMAC structure.


Artificial intelligence review:
Research summary
تتناول هذه الدراسة تصميم متحكم يعتمد على بنية النموذج المخيخي (CMAC) لتحسين استجابة نظام رباعية المحرك (Quadcopter). يتميز هذا النظام بقدرته على تحقيق استقرار جيد وأداء مرن في ظل وجود اضطرابات خارجية. تم استخدام الحزمة البرمجية ماتلاب لمحاكاة النظام ومقارنة أداء المتحكم المقترح مع متحكم PID التقليدي. أظهرت النتائج أن استخدام CMAC مع PID يضمن استقرار النظام ومرونته بشكل أفضل مقارنة باستخدام PID فقط. كما تم مقارنة النظام المقترح مع أنظمة أخرى تستخدم CMAC ولكن بهياكل مختلفة، وأثبتت الدراسة تفوق النظام المقترح في تحقيق الاستقرار المطلوب ضمن القيود الزمنية المفروضة.
Critical review
دراسة نقدية: على الرغم من أن البحث يقدم حلاً مبتكراً لتحسين استجابة نظام رباعية المحرك باستخدام النموذج المخيخي، إلا أنه كان من الممكن تعزيز الدراسة بإجراء تجارب عملية على نماذج حقيقية بدلاً من الاعتماد الكامل على المحاكاة البرمجية. كما أن الدراسة تفتقر إلى تحليل تفصيلي للتكلفة والموارد المطلوبة لتطبيق هذا النظام في الواقع العملي. بالإضافة إلى ذلك، كان من الممكن تقديم مقارنة أوسع مع تقنيات تحكم أخرى غير المذكورة في الدراسة للحصول على رؤية شاملة لأداء النظام المقترح.
Questions related to the research
  1. ما هو الهدف الرئيسي من البحث؟

    الهدف الرئيسي من البحث هو تحسين استجابة نظام رباعية المحرك في الزمن الحقيقي عند تعرضه لاضطرابات خارجية باستخدام متحكم يعتمد على بنية النموذج المخيخي (CMAC).

  2. ما هي الأدوات البرمجية المستخدمة في محاكاة النظام؟

    تم استخدام الحزمة البرمجية ماتلاب لمحاكاة النظام وتحليل أداء المتحكم المقترح.

  3. ما هي الفائدة الرئيسية من دمج CMAC مع PID؟

    دمج CMAC مع PID يضمن استقرار النظام ومرونته بشكل أفضل مقارنة باستخدام PID فقط، خاصة في ظل وجود اضطرابات خارجية.

  4. ما هي المجالات التي يمكن استخدام رباعية المحرك فيها؟

    يمكن استخدام رباعية المحرك في مجالات متعددة مثل المراقبة، البحث والإنقاذ، رسم الخرائط، وتسليم الطرود.


References used
Domingues, J. (2009): Quadrotor prototype, Universidade Tecnic de Lisboa
Whidborne,J. (2007): Modelling And Linear Control Of A Quadrotor, Cranfield University
Sørensen, A. (2010): Autonomous Control of a Miniature Quadrotor Following Fast Trajectories, Aaloborg University
rate research

Read More

In this study we developed an adaptive model inspired by internal models in the cerebellum and this approach called Feedback Error Learning (FEL). FEL is the origin of Learning Feed-Forward Control (LFFC). It depends on Feedback Controller and Feed-F orward Controller which is a Neural Network, and this Neural Network uses feedback controller output as training signal. We developed this approach to control a robot arm, and to balance inverted pendulum and to control bus suspension system. We developed this approach by adding a second Neural Network, and this new Neural Network uses FEL controller output as training signal. We simulate these systems by using Matlab and Simulink, and we find that this development improves control performance.
This paper presents the proposed Method for designing fuzzy supervisory controller model for Proportional Integral Differential controller (PID) by Fuzzy Reasoning Petri Net (FRPN),the Features of Method shows the fuzzification value for each prop erty of membership function for each input of fuzzy supervisory controller, and determine the total number of rules required in designing the controller before enter the appropriate rules in the design phase of the rules, and determine the value of the inputs of the rule that has been activated, and assembly variables that have the same property and show the value for each of them programmatically, and determine the deffuzification value using deffuzification methods.
In this research, a research and educational tool for studying the sensitivity of the vehicle's suspension system to the properties and parameters of the suspension’s components is developed. This tool is a program that can study different models cre ated using the Matlab/Simulink software package with its various libraries. Different types of models can be analysed, such as differential equation models expressing a mathematical model, block diagrams, or state space models. The tool also enables students to identify the suspension’s components, and its basic design parameters, and choose these parameters. Researchers and students will be able to test their models in terms of response, overshoot, and sensitivity, when conducting simulations in different working conditions.
Multi-turn response selection models have recently shown comparable performance to humans in several benchmark datasets. However, in the real environment, these models often have weaknesses, such as making incorrect predictions based heavily on super ficial patterns without a comprehensive understanding of the context. For example, these models often give a high score to the wrong response candidate containing several keywords related to the context but using the inconsistent tense. In this study, we analyze the weaknesses of the open-domain Korean Multi-turn response selection models and publish an adversarial dataset to evaluate these weaknesses. We also suggest a strategy to build a robust model in this adversarial environment.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا