Do you want to publish a course? Click here

Decoupling the decision-making process from the data forwarding process is the heart of software-defined networks technology. One of the most important components of this technology is the controller, which is the smartest component in the network. Many of the controllers have been developed since the technology originated, and many researches have been done to compare the performance of these controllers for productivity, delay and protection. And due to the importance of selecting the appropriate controller according to different parameters and network states, we studied the performance of four controllers: Floodlight, Beacon, Nox, RYU in terms of productivity, RTT, time of establishing connection with an OpenFlow switch and the time for adding an input to the switch flow table. The results showed that the Beacon control was superior in performance when the number of switches in the network was equal to the number of processor cores used by the controller. For RTT and the time needed to add an input to the flow table, the NOX controller achieved less time. Finally, the Floodlight controller was the best in terms of establishing connection with the switch because it needed less time.
The fluctuation of voltage cannot be tolerant for equipment in modern industrial plants such as lighting loads, PLC, robots, and another equipment, which exist in transmission and distribution systems, so we should use proper aids to regulate volta ge and control it. In this study a (± 25Mvar) Static Synchronous Compensator (STATCOM) is used to enhance voltage stability in a (66 kv, 1500MV.A) power transmission network. The STATCOM in this study regulates the voltage of the transmission network for changing in voltage (± 7%) from the nominal value. A model of the power transmission system and another model of the STATCOM device, which will enhance the stability of voltage are designed in MATLAB/Simulink. And the control of (STATCOM) is achieved by using a Proportional Integrative (PI) controller with Fuzzy Logic Supervisor to adjust the parameters in PI controller in DC voltage regulator during transient states of load changing which gives more stability in DC voltage. The results of the simulation are shown. This study demonstrates the ability of STATCOM for regulating the voltage of the transmission system by injecting and absorbing reactive power from the power system, and the DC voltage be more stability by using Fuzzy Logic supervisor.
Gas turbines are used as main engines to convert fuel energy into mechanical energy used to move the generator and thus produce electrical power at the power plants. When you use a gas turbine in the power plants, it must maintain a constant speed of the turbine and thus fixed frequency output of the current also must maintain the parameters of the turbine such as pressures and temperatures at the limits and thus extend the life of the turbine components and increased efficiency. there was a need for the design of control systems maintain a constant speed of the turbine and to avoid operating at others and allowed values. In this research, we modeled the gas turbine and solving the model using MATLAB/ SIMULINK program, and then design a proportional integral differential controller for gas turbine operating In Gandar Station
This paper presents the proposed Method for designing fuzzy supervisory controller model for Proportional Integral Differential controller (PID) by Fuzzy Reasoning Petri Net (FRPN),the Features of Method shows the fuzzification value for each prop erty of membership function for each input of fuzzy supervisory controller, and determine the total number of rules required in designing the controller before enter the appropriate rules in the design phase of the rules, and determine the value of the inputs of the rule that has been activated, and assembly variables that have the same property and show the value for each of them programmatically, and determine the deffuzification value using deffuzification methods.
This paper presents a robust cerebellar model articulation controller (CMAC) for quadcopter system. We simulate this systems by using Matlab and Simulink, and we find that this control guarantees good balance performance and acceptable robust per formance. And we compare our CMAC with other systems using CMAC but in structures differ of our CMAC structure.
In this research a proportional integral differential classic (PID controller) and state feedback controller was designed to control the in the inverted pendulum and a comparison between all the cases and choose the most suitable controller using MATLAB / SIMULINK program
In this paper, we presents a solution for those problems by using (CAN) protocol in ATM networks due to many features such as the priority of access and lose-free bus arbitration. We designed a new application layer for using (CAN) in ATM network. Then we compared this proposal pattern with the current ATM network by using MATLAB.
As known the electric energy is one of the most important factor of development, but using it causes bad environmental impacts due to depending on fuel as the source of electrical generation. Using renewable energy is still limited and needs a huge fixed costs, so it is important to reduce electrical consumption by monitoring and controlling equipment to achieve its function with lower consumption. HVAC sector is the most consumption part in buildings, therefor any saving in this sector will affect manifestly on the total electrical consumption in the building and this is done by control system. Control systems are in continuous improving, so it is needed to exploit them in saving electrical energy. In this research, studying control of VAV system and designing fuzzy logic controller to drive supply fan in order to reduce its electrical consumption, this is performed through designing practical prototype of the supply fan with its tools and software which are designed to view the electrical energy saving which we gain it by using fuzzy logic controller.
This research deals with improving the efficiency of solar photovoltaic (PV) power systems using a Fuzzy Logic Controller (FLC) for Maximum Power Point Tracking (MPPT), to control the duty cycle of DC-DC Voltage Converter, to achieve the photovolt aic system works at a Maximum Power Point under different atmospheric changes of the solar insolation and ambient temperature. In this context, this research presents a new model for FLC developed in Matlab/Simulink environment. The proposed model for the controller is based on the conventional Perturb and Observe (P&O) technique. Where, in similar to the conventional P&O technique, the changes in the Power and tension of photovoltaic power system, are considered as the input variables of the proposed controller, while the output variable is the change in the duty cycle. The main advantage of the developed controller FLC, based on the considering the change in the duty cycle has a Variable Step Size, and directly related to the changes in the power and tension of the Photovoltaic system. Which make it possible to overcome the problem of fixed Step Size in the change of the duty cycle in the conventional MPPT- P&O Controller based on P&O technique. The MPPT- P&O Fuzzy, works by a variable step size achieve a fast speed response and high efficiency for tracking the MPP point under sudden and rapidly varying atmospheric conditions, compared with the conventional MPPT- P&O. The simulation results completed in Matlab/Simulink environment, showed the best performance of developed MPPT- P&O Fuzzy controller in tracking the MPP by achieving a better dynamic performance and high accuracy, compared with the use of the conventional MPPT- P&O under different atmospheric changes.
This research deals with improving the efficiency of solar photovoltaic (PV) power systems using a Maximum Power Point Tracker controller (MPPT controller), based in his work on the Maximum Power Point Tracking techniques via the direct control met hod. Which used to control the duty cycle of DC-DC Voltage Converter, to achieve the photovoltaic system works at a Maximum Power Point under different atmospheric changes of the solar insolation and ambient temperature. In this context, our work is focused on the simulation of the components of the power generating system, such as the photovoltaic system, DC-DC Boost Converter and a MPPT controller in Matlab/Simulink environment. The simulating of the MPPT controller was based on several algorithms such as: Constant Voltage algorithm, Perturb and Observe algorithm and Incremental Conductance algorithm by using Embedded MATLAB function. The simulation results showed the effectiveness of the MPPT controller to increase the photovoltaic system power compared with non-use of a MPPT controller. The results also showed the best performance of MPPT controller based on Perturb and Observe and Incremental Conductance algorithm, compared with constant voltage algorithm in tracking the Maximum Power Point under atmospheric changes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا