Do you want to publish a course? Click here

Improving the efficiency of Solar Photovoltaic Power Systems using a Maximum Power Point Tracker Controller based on DC-DC Boost Converter

تحسين كفاءة نظم القدرة الشمسية الكهروضوئية باستخدام متحكم تتبع نقطة الاستطاعة العظمى المرتكز على مبدل رافع للجهد المستمر

2187   1   195   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This research deals with improving the efficiency of solar photovoltaic (PV) power systems using a Maximum Power Point Tracker controller (MPPT controller), based in his work on the Maximum Power Point Tracking techniques via the direct control method. Which used to control the duty cycle of DC-DC Voltage Converter, to achieve the photovoltaic system works at a Maximum Power Point under different atmospheric changes of the solar insolation and ambient temperature. In this context, our work is focused on the simulation of the components of the power generating system, such as the photovoltaic system, DC-DC Boost Converter and a MPPT controller in Matlab/Simulink environment. The simulating of the MPPT controller was based on several algorithms such as: Constant Voltage algorithm, Perturb and Observe algorithm and Incremental Conductance algorithm by using Embedded MATLAB function. The simulation results showed the effectiveness of the MPPT controller to increase the photovoltaic system power compared with non-use of a MPPT controller. The results also showed the best performance of MPPT controller based on Perturb and Observe and Incremental Conductance algorithm, compared with constant voltage algorithm in tracking the Maximum Power Point under atmospheric changes.


Artificial intelligence review:
Research summary
يعالج هذا البحث تحسين كفاءة نظم القدرة الشمسية الكهروضوئية باستخدام متحكم تتبع نقطة الاستطاعة العظمى (MPPT) المرتكز على مبدل رافع للجهد المستمر. يتم ذلك من خلال محاكاة مكونات نظام توليد الطاقة الكهروضوئي في بيئة Matlab/Simulink، واستخدام عدة خوارزميات لتتبع نقطة الاستطاعة العظمى مثل خوارزمية التوتر الثابت، خوارزمية الاضطراب والمراقبة، وخوارزمية زيادة الناقلية. أظهرت نتائج المحاكاة فعالية المتحكم MPPT في زيادة استطاعة النظام الكهروضوئي مقارنة بعدم استخدامه، كما أظهرت الأداء الأفضل لمتحكم MPPT المعتمد على خوارزمية الاضطراب والمراقبة وخوارزمية زيادة الناقلية مقارنة بخوارزمية التوتر الثابت في تتبع نقطة الاستطاعة العظمى للنظام في ظل التغيرات الجوية المختلفة. يهدف البحث إلى تحسين كفاءة نظم توليد الطاقة الشمسية الكهروضوئية من خلال استخدام متحكمات MPPT لتحقيق الاستفادة القصوى من الطاقة الشمسية المتاحة وتقليل الفاقد الطاقي.
Critical review
دراسة نقدية: تعتبر هذه الدراسة خطوة مهمة نحو تحسين كفاءة نظم الطاقة الشمسية الكهروضوئية، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، كان من الممكن تضمين تحليل اقتصادي لتكلفة استخدام متحكمات MPPT مقارنة بالفوائد الطاقية المحققة، مما يعطي صورة أوضح عن الجدوى الاقتصادية. ثانياً، الدراسة تركز بشكل كبير على المحاكاة في بيئة Matlab/Simulink، وكان من الممكن تعزيز الدراسة بتجارب عملية لتأكيد نتائج المحاكاة. أخيراً، يمكن توسيع نطاق البحث ليشمل تقنيات تحكم أخرى مثل الشبكات العصبية والتحكم المنزلق، مما قد يفتح آفاقاً جديدة لتحسين كفاءة نظم الطاقة الشمسية.
Questions related to the research
  1. ما هي الخوارزميات المستخدمة في البحث لتتبع نقطة الاستطاعة العظمى؟

    تم استخدام ثلاث خوارزميات لتتبع نقطة الاستطاعة العظمى: خوارزمية التوتر الثابت، خوارزمية الاضطراب والمراقبة، وخوارزمية زيادة الناقلية.

  2. ما هي بيئة المحاكاة التي تم استخدامها في البحث؟

    تم استخدام بيئة Matlab/Simulink لمحاكاة مكونات نظام توليد الطاقة الكهروضوئي ومتحكم MPPT.

  3. ما هي النتائج الرئيسية التي توصل إليها البحث؟

    أظهرت نتائج المحاكاة فعالية المتحكم MPPT في زيادة استطاعة النظام الكهروضوئي مقارنة بعدم استخدامه، كما أظهرت الأداء الأفضل لمتحكم MPPT المعتمد على خوارزمية الاضطراب والمراقبة وخوارزمية زيادة الناقلية مقارنة بخوارزمية التوتر الثابت.

  4. ما هي التوصيات التي قدمها البحث لمزيد من الدراسات المستقبلية؟

    أوصى البحث باستخدام تقنيات تحكم أخرى مثل التحكم باستخدام الشبكات العصبية والتحكم المنزلق، ومقارنة نتائج هذه التقنيات مع التقنيات المستخدمة في البحث الحالي.


References used
ESRAM, T.; CHAPMAN, P. Comparison of photovoltaic array maximum power point tracking techniques. IEEE Transactions on Energy Conversion 22, 2007, 439–449
RAVI, N.; RAVI, M. A study on Maximum Power Point Tracking techniques for Photovoltaic systems. International Journal of Engineering and Technical Research. 3, 2015, 189-196
SHARMA, D.; PUROHIT, G. Hybrid Control Method for Maximum Power Point Tracking (MPPT) of Solar PV Power Generating System. Australian Journal of Basic and Applied Sciences. 8, 2014, 255-262
rate research

Read More

This research deals with the modeling of a Multi-Layers Feed Forward Artificial Neural Networks (MLFFNN), trained using Gradient Descent algorithm with Momentum factor & adaptive learning rate, to estimate the output of the neural network correspon ding to the optimal Duty Cycle of DC-DC Boost Converter to track the Maximum Power Point of Photovoltaic Energy Systems. Thus, the DMPPT-ANN “Developed MPPT-ANN” controller proposed in this research, independent in his work on the use of electrical measurements output of PV system to determine the duty cycle, and without the need to use a Proportional-Integrative Controller to control the cycle of the work of the of DC-DC Boost Converter, and this improves the dynamic performance of the proposed controller to determine the optimal Duty Cycle accurately and quickly. In this context, this research discusses the optimal selection of the proposed MLFFNN structure in the research in terms of determining the optimum number of hidden layers and the optimal number of neurons in them, evaluating the values of the Mean square error and the resulting Correlation Coefficient after each training of the neural network. The final network model with the optimal structure is then adopted to form the DMPPT-ANN Controller to track the MPP point of the PV system. The simulation results performed in the Matlab / Simulink environment demonstrated the best performance of the proposed DMPPT-ANN controller based on the MLFFNN neural network model, by accurately estimating the Duty Cycle and improving the response speed of the PV system output to MPP access, , as well as finally eliminating the resulting oscillations in the steady state of the Power response curve of PV system compared with the use of a number of reference controls: an advanced tracking controller MPPT-ANN-PI based on ANN network to estimate MPP point voltage with conventional PI controller, a MPPT-FLC and a conventional MPPT-INC uses the Incremental Conductance technique INC
Search is based on the first stage DC/DC in the solar photovoltaic system, where it was appropriate to use Ripple Correlation Control method for tracking the maximum power point of photovoltaic arrays. The technique takes advantage of the signal ri pple, which is automatically present in power converters, where the ripple is interpreted as a perturbation from which a gradient ascent optimization can be realized. The Basic feature of Ripple Correlation Control technique converges asymptotically at maximum speed to the maximum power point, and has simple circuit implementations. And will validate the results in practice.
DC-DC converter is one of the most essential component for efficient utilization in renewable energy sources. The main goal of this paper is to use Maximum power point tracking (MPPT) system and buck-boost DC/DC converter in the photovoltaic (PV) system to maximize the (PV) output power, irrespective of the temperature and irradiation conditions.
In the following study we make a simulation of an independent photovoltaic system connected to an (ohm - unit of electrical resistance) load which consists of the following parts: (Photovoltaic Module - Converter dc- dc - Control system to track ing the maximum power point via MATLAB & Simulink program) Taking advantage of equations of Photovoltaic Module we chart the graph and simulate curves of the Module. We also simulate the converter –type Cuk- which gives higher or lower voltage than input voltage but with reversed polarity. We also make a comparison between the two systems tracking: the first tracker is a traditional one and the second one is a system in which it uses a fuzzy logic tracker. The results of the comparison shows different capacities taking into consideration the varieties of weather conditions of regular solar radiation as well as the partial shadow. Such results showed that fuzzy logic has got more capability to harmonize with all conditions especially in cases of low solar radiation and partial shadow.
This research deals with improving the efficiency of solar photovoltaic (PV) power systems using a Fuzzy Logic Controller (FLC) for Maximum Power Point Tracking (MPPT), to control the duty cycle of DC-DC Voltage Converter, to achieve the photovolt aic system works at a Maximum Power Point under different atmospheric changes of the solar insolation and ambient temperature. In this context, this research presents a new model for FLC developed in Matlab/Simulink environment. The proposed model for the controller is based on the conventional Perturb and Observe (P&O) technique. Where, in similar to the conventional P&O technique, the changes in the Power and tension of photovoltaic power system, are considered as the input variables of the proposed controller, while the output variable is the change in the duty cycle. The main advantage of the developed controller FLC, based on the considering the change in the duty cycle has a Variable Step Size, and directly related to the changes in the power and tension of the Photovoltaic system. Which make it possible to overcome the problem of fixed Step Size in the change of the duty cycle in the conventional MPPT- P&O Controller based on P&O technique. The MPPT- P&O Fuzzy, works by a variable step size achieve a fast speed response and high efficiency for tracking the MPP point under sudden and rapidly varying atmospheric conditions, compared with the conventional MPPT- P&O. The simulation results completed in Matlab/Simulink environment, showed the best performance of developed MPPT- P&O Fuzzy controller in tracking the MPP by achieving a better dynamic performance and high accuracy, compared with the use of the conventional MPPT- P&O under different atmospheric changes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا