Do you want to publish a course? Click here

Developing Fuzzy Logic Controller based on Perturb and Observe technique to improve the efficiency of Solar Photovoltaic Energy Systems using Matlab/Simulink

تطوير متحكم عائم مرتكز على تقنية الاضطراب و المراقبة لتحسين كفاءة نظم الطاقة الشمسية الكهروضوئية باستخدام MATLAB/SIMULINK

1805   6   175   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This research deals with improving the efficiency of solar photovoltaic (PV) power systems using a Fuzzy Logic Controller (FLC) for Maximum Power Point Tracking (MPPT), to control the duty cycle of DC-DC Voltage Converter, to achieve the photovoltaic system works at a Maximum Power Point under different atmospheric changes of the solar insolation and ambient temperature. In this context, this research presents a new model for FLC developed in Matlab/Simulink environment. The proposed model for the controller is based on the conventional Perturb and Observe (P&O) technique. Where, in similar to the conventional P&O technique, the changes in the Power and tension of photovoltaic power system, are considered as the input variables of the proposed controller, while the output variable is the change in the duty cycle. The main advantage of the developed controller FLC, based on the considering the change in the duty cycle has a Variable Step Size, and directly related to the changes in the power and tension of the Photovoltaic system. Which make it possible to overcome the problem of fixed Step Size in the change of the duty cycle in the conventional MPPT- P&O Controller based on P&O technique. The MPPT- P&O Fuzzy, works by a variable step size achieve a fast speed response and high efficiency for tracking the MPP point under sudden and rapidly varying atmospheric conditions, compared with the conventional MPPT- P&O. The simulation results completed in Matlab/Simulink environment, showed the best performance of developed MPPT- P&O Fuzzy controller in tracking the MPP by achieving a better dynamic performance and high accuracy, compared with the use of the conventional MPPT- P&O under different atmospheric changes.


Artificial intelligence review:
Research summary
يتناول هذا البحث تحسين كفاءة نظم الطاقة الشمسية الكهروضوئية باستخدام متحكم عائم لتتبع نقطة الاستطاعة العظمى (MPPT)، للتحكم في دورة عمل مبدل جهد مستمر. يتم تحقيق ذلك من خلال نموذج جديد لمتحكم عائم MPPT-P&O Fuzzy مطور في بيئة Matlab/Simulink، يعتمد على تقنية الاضطراب والمراقبة (P&O). يتميز المتحكم العائم بخطوة تشغيل متغيرة تتعلق بتغيرات الاستطاعة والتوتر للنظام الكهروضوئي، مما يمكن من التغلب على مشكلة الخطوة الثابتة في المتحكم التقليدي. أظهرت نتائج المحاكاة أن المتحكم العائم يحقق سرعة استجابة عالية وكفاءة أفضل في تتبع نقطة MPP مقارنة مع المتحكم التقليدي MPPT-P&O، خاصة عند التغيرات الجوية المفاجئة والسريعة. تم اختبار فعالية المتحكم العائم من خلال محاكاة نظام توليد طاقة كهروضوئي في بيئة Matlab/Simulink، وأظهرت النتائج أداءً ديناميكياً أفضل ودقة عالية في تتبع نقطة MPP.
Critical review
دراسة نقدية: يعتبر البحث مساهمة قيمة في مجال تحسين كفاءة نظم الطاقة الشمسية الكهروضوئية، حيث يقدم حلاً مبتكراً باستخدام متحكم عائم يعتمد على تقنية الاضطراب والمراقبة. ومع ذلك، يمكن الإشارة إلى بعض النقاط التي قد تحتاج إلى مزيد من التوضيح أو التحسين. أولاً، قد يكون من المفيد تقديم مقارنة أكثر تفصيلاً بين المتحكم العائم والتقنيات الأخرى المتقدمة مثل الشبكات العصبونية والخوارزميات الجينية. ثانياً، يمكن تحسين البحث من خلال تقديم دراسة تجريبية على نظام فعلي بدلاً من الاعتماد فقط على المحاكاة. أخيراً، يمكن توضيح كيفية تأثير تغيرات الظروف الجوية على الأداء بشكل أكثر تفصيلاً، وتقديم توصيات عملية لتطبيق المتحكم العائم في نظم الطاقة الشمسية الكهروضوئية الفعلية.
Questions related to the research
  1. ما هي التقنية المستخدمة في المتحكم العائم لتحسين كفاءة نظم الطاقة الشمسية الكهروضوئية؟

    التقنية المستخدمة هي تقنية الاضطراب والمراقبة (P&O) مع متحكم عائم بخطوة تشغيل متغيرة.

  2. ما هي الميزة الرئيسية للمتحكم العائم المطور مقارنة بالمتحكم التقليدي MPPT-P&O؟

    الميزة الرئيسية هي خطوة التشغيل المتغيرة التي تتعلق بتغيرات الاستطاعة والتوتر، مما يتيح سرعة استجابة عالية وكفاءة أفضل في تتبع نقطة MPP.

  3. كيف تم اختبار فعالية المتحكم العائم في البحث؟

    تم اختبار فعالية المتحكم العائم من خلال محاكاة نظام توليد طاقة كهروضوئي في بيئة Matlab/Simulink، ومقارنة النتائج مع المتحكم التقليدي MPPT-P&O.

  4. ما هي التوصيات المستقبلية التي يمكن استنتاجها من البحث؟

    يمكن استكمال العمل باستخدام تقنيات تحكم متقدمة أخرى كالتحكم باستخدام الشبكات العصبونية والخوارزميات الجينية، ومقارنة نتائج هذه التقنيات مع التقنيات المستخدمة في هذا البحث.


References used
RAVI, N.; RAVI, M. A study on Maximum Power Point Tracking techniques for Photovoltaic systems. International Journal of Engineering and Technical Research. 3, 2015, 189-196
SHARMA, D.; PUROHIT, G. Hybrid Control Method for Maximum Power Point Tracking (MPPT) of Solar PV Power Generating System. Australian Journal of Basic and Applied Sciences. 8, 2014, 255-262
TOFOLI, F.; PEREIR, D.; PAULA, W. Comparative Study of Maximum Power Point Tracking Techniques for Photovoltaic Systems. International Journal of Photo energy. Volume 2015, Article ID 812582, 10 pages
rate research

Read More

This research presents a new methodology for the development of a controller based on Artificial Neural Networks and Direct control method in order to obtain the maximum available energy from Solar Photovoltaic (PV) Energy systems under different a tmospheric changes of the solar insolation and ambient temperature. In this context, this research presents a new model for MPPT-ANN in order to track the Maximum Power Point of PV systems in Matlab/Simulink environment. The developed controller is based on Feed Forward Neural Network FFNN trained by Back-propagation algorithm of error to determine the optimal voltage operation of the system PV system at different atmospheric changes. This research also suggests, control algorithm based on the direct control method in order to determine the duty cycle, which used to control directly the operating of DCDC Voltage Converter, depending on a comparison of the difference between the output voltage of PV system and the optimal voltage output of the neural network. The developed controller MPPT-ANN based on a network FFNN, Characterized by fast speed to track of MPP point and achieve high efficiency for the PV system under the atmospheric changes. The simulation results completed in Matlab/Simulink environment, showed the best performance of developed controller MPPT-ANN by achieving a better dynamic performance and high accuracy when tracking the MPP, compared with the use of the another PI-ANN controller based on artificial neural network and the conventional Proportional-Integral Controller, and compared with the use of the conventional MPPTP& O based on Perturb and Observe (P&O) technique under different atmospheric changes.
This research deals with improving the efficiency of solar photovoltaic (PV) power systems using a Maximum Power Point Tracker controller (MPPT controller), based in his work on the Maximum Power Point Tracking techniques via the direct control met hod. Which used to control the duty cycle of DC-DC Voltage Converter, to achieve the photovoltaic system works at a Maximum Power Point under different atmospheric changes of the solar insolation and ambient temperature. In this context, our work is focused on the simulation of the components of the power generating system, such as the photovoltaic system, DC-DC Boost Converter and a MPPT controller in Matlab/Simulink environment. The simulating of the MPPT controller was based on several algorithms such as: Constant Voltage algorithm, Perturb and Observe algorithm and Incremental Conductance algorithm by using Embedded MATLAB function. The simulation results showed the effectiveness of the MPPT controller to increase the photovoltaic system power compared with non-use of a MPPT controller. The results also showed the best performance of MPPT controller based on Perturb and Observe and Incremental Conductance algorithm, compared with constant voltage algorithm in tracking the Maximum Power Point under atmospheric changes.
Since the invention of Fuzzy logic and fuzzy control, the latter has been growing in spread and importance in many applications and devices in many life aspects. This maybe due to the easy use of a fuzzy control system, and for being far of math co mplications. Even if the plant model is unknown, a self-organizing fuzzy controller (SOFC) can improve the response of an already exist linear control table, or even can build a control table from scratch, by assessing current performance of the controller and adjusting the control table accordingly. This paper provides a simple article that shows how to design and use a self organizing fuzzy controller, through a simulation example using MATLAB & Simulink in which a variable torque loaded DC motor speed regulation is done. The simulation showed the ability of the controller to provide a good response and decrease speed error by a notable amount at load torque changing times. This paper can be used as textbook material for students or researchers interested in the field of adaptive control, especially self-organizing fuzzy control.
As known the electric energy is one of the most important factor of development, but using it causes bad environmental impacts due to depending on fuel as the source of electrical generation. Using renewable energy is still limited and needs a huge fixed costs, so it is important to reduce electrical consumption by monitoring and controlling equipment to achieve its function with lower consumption. HVAC sector is the most consumption part in buildings, therefor any saving in this sector will affect manifestly on the total electrical consumption in the building and this is done by control system. Control systems are in continuous improving, so it is needed to exploit them in saving electrical energy. In this research, studying control of VAV system and designing fuzzy logic controller to drive supply fan in order to reduce its electrical consumption, this is performed through designing practical prototype of the supply fan with its tools and software which are designed to view the electrical energy saving which we gain it by using fuzzy logic controller.
In this research, a research and educational tool for studying the sensitivity of the vehicle's suspension system to the properties and parameters of the suspension’s components is developed. This tool is a program that can study different models cre ated using the Matlab/Simulink software package with its various libraries. Different types of models can be analysed, such as differential equation models expressing a mathematical model, block diagrams, or state space models. The tool also enables students to identify the suspension’s components, and its basic design parameters, and choose these parameters. Researchers and students will be able to test their models in terms of response, overshoot, and sensitivity, when conducting simulations in different working conditions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا