Do you want to publish a course? Click here

The DC sources like fuel cells, solar cells, storage units need to raise its output voltage in order to match load requirements. So often these systems are equipped with Power Electronics techniques in general and DC-DC booster converters in partic ular. The paper provides the mathematical model and algorithm for designing the booster converter with selected values in order to define the values of the most important parameters of its components including inductor parameters. Based on the developed algorithm, a simulation of the system is conducted in MATLAB / Simulink environment to analyze the impact of changing the inductor inductance on booster performance. Also the paper includes the mathematical model and algorithm for designing the booster inductor in terms of material, conductor type and shape of core and number of windings. Based on the design results, the inductor has been implemented completely in the laboratory. The inductance of the implemented inductor has been measured using a number of measuring methods to make sure of its value and match it with the theoretical values of design. Finally, the developed algorithm has been translated into a program in an environment Matlab / GUI , with which several computer tests have been performed.
This research deals with improving the efficiency of solar photovoltaic (PV) power systems using a Fuzzy Logic Controller (FLC) for Maximum Power Point Tracking (MPPT), to control the duty cycle of DC-DC Voltage Converter, to achieve the photovolt aic system works at a Maximum Power Point under different atmospheric changes of the solar insolation and ambient temperature. In this context, this research presents a new model for FLC developed in Matlab/Simulink environment. The proposed model for the controller is based on the conventional Perturb and Observe (P&O) technique. Where, in similar to the conventional P&O technique, the changes in the Power and tension of photovoltaic power system, are considered as the input variables of the proposed controller, while the output variable is the change in the duty cycle. The main advantage of the developed controller FLC, based on the considering the change in the duty cycle has a Variable Step Size, and directly related to the changes in the power and tension of the Photovoltaic system. Which make it possible to overcome the problem of fixed Step Size in the change of the duty cycle in the conventional MPPT- P&O Controller based on P&O technique. The MPPT- P&O Fuzzy, works by a variable step size achieve a fast speed response and high efficiency for tracking the MPP point under sudden and rapidly varying atmospheric conditions, compared with the conventional MPPT- P&O. The simulation results completed in Matlab/Simulink environment, showed the best performance of developed MPPT- P&O Fuzzy controller in tracking the MPP by achieving a better dynamic performance and high accuracy, compared with the use of the conventional MPPT- P&O under different atmospheric changes.
This research deals with improving the efficiency of solar photovoltaic (PV) power systems using a Maximum Power Point Tracker controller (MPPT controller), based in his work on the Maximum Power Point Tracking techniques via the direct control met hod. Which used to control the duty cycle of DC-DC Voltage Converter, to achieve the photovoltaic system works at a Maximum Power Point under different atmospheric changes of the solar insolation and ambient temperature. In this context, our work is focused on the simulation of the components of the power generating system, such as the photovoltaic system, DC-DC Boost Converter and a MPPT controller in Matlab/Simulink environment. The simulating of the MPPT controller was based on several algorithms such as: Constant Voltage algorithm, Perturb and Observe algorithm and Incremental Conductance algorithm by using Embedded MATLAB function. The simulation results showed the effectiveness of the MPPT controller to increase the photovoltaic system power compared with non-use of a MPPT controller. The results also showed the best performance of MPPT controller based on Perturb and Observe and Incremental Conductance algorithm, compared with constant voltage algorithm in tracking the Maximum Power Point under atmospheric changes.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا