Do you want to publish a course? Click here

Beam search is the default decoding strategy for many sequence generation tasks in NLP. The set of approximate K-best items returned by the algorithm is a useful summary of the distribution for many applications; however, the candidates typically exh ibit high overlap and may give a highly biased estimate for expectations under our model. These problems can be addressed by instead using stochastic decoding strategies. In this work, we propose a new method for turning beam search into a stochastic process: Conditional Poisson stochastic beam search. Rather than taking the maximizing set at each iteration, we sample K candidates without replacement according to the conditional Poisson sampling design. We view this as a more natural alternative to Kool et al. (2019)'s stochastic beam search (SBS). Furthermore, we show how samples generated under the CPSBS design can be used to build consistent estimators and sample diverse sets from sequence models. In our experiments, we observe CPSBS produces lower variance and more efficient estimators than SBS, even showing improvements in high entropy settings.
Using high strength concrete made a big step in designing and constructing reinforced concrete structures. In this research, shear resistance of high strength concrete beams with average resistance of (65Mpa) and without shear reinforcement was ca lculated by making Experimental tests, also we studied the effect of cross section shape on shear resistance, and measured the deflection in the middle of the beams then we compared these results with the mathematical results and with results from other researchers, finally we developed a relationship to determine shear capacity in high strength concrete T beams.
Many techniques have been used in repair and strengthening of reinforced beam, among which are external steel beams, external pre- stressing, epoxy injection, additional concrete overlay, external steel plates, additional longitudinal and transver se - steel bars. Fifteen R.C. beams were tested until failure and the deflection, surface strains, internal steel strains, external steel strains and crack patterns were measured, the results were analyzed and conclusions were summarized. Finally, the recommendations were stated with the needed future work.
This research deals with the minimum cost design of reinforced concrete T-beams according to the Syrian code. The aim is to minimize the total cost of the beam while respecting all the design requirements. Traditional method depend on a set of supp ositions, in the opposite this methodology aim to reach the optimal solution among a set of constraints with respect the objective function. So that, using this methodology leading to the minimum cost reinforced section design. This research is shown that the problem can be formulated in a nonlinear mathematical programming format. Several cases are used to explain the applicability of the formulation in accordance with the current Syrian code. Traditional method of Syrian code has been used to design sections in this paper, utilizing the nonlinear programming method provided by Lingo14.0 software from LINDO Systems Inc. The comparison of the results shows that important saving can be obtained at the total cost of a reinforced concrete T-beams design.
Fiber reinforced polymer (FRP) plates have gained popularity in the strengthening of reinforced concrete (RC) members due to the high strength to weight ratio, the ease of installation and low maintenance costs compared to other systems such as steel plates. Also, external bonding of fiber reinforced polymer (FRP) plate has been proven to be an effective method to strengthen and damage RC structures. However, not much attention has been given to the long-term behavioral aspects of FRP-strengthened RC members. It is difficult to accurately predict the long-term deflection, crack width and behavior of FRP-strengthened RC members. This study presents a method for predicting the deflections at any time of the service life of normal and high strength concrete structures, loaded at any age, creep coefficient and shrinkage strain and the participation of the compressive steel for RC beams, and for RC beams strengthened with FRP plates. The accurate prediction of deflections is a complex problem which requires the use of non-linear and time-dependent analytical methods. These methods are, in general, time consuming and require great effort[6-13]. However, at the design stage, simple but reliable methods which take into account the most important parameters influencing the long-term deflections may be very useful to adequately design the structure. For that purpose, many simplified methods have been developed [1-2-3-4-14]. Equations have been programmed to access the method combines the simplicity and accuracy and provides valuable information about the influence of each parameter on the increasing deflections with time. The analytical values are compared to the experimental results from some existing papers [8-9], and to the results obtained from ACI code [1]. It is found that the analytical method is in a good agreement with the experimental results from some existing papers [8-9].
This research includes an experimental study and a nonlinear analysis using the finite element method of reinforced concrete beams with large opening in body that exist in shear zone . The tested beams are simply supported with rectangular section and without additional reinforcement in opening region. The opening is square in shape with variable dimensions and constant distance from the support . Studying the effect of changing length of the opening on the behavior of the reinforced concrete beams was already completed. The modes of cracks , (load-deflection ) relationship, ultimate load and the mode of failure for all beams were determinate . The study showed that existence an opening in shear region of beams reduce the strength of beams and affect on the mode of shear failure , and any addition in the depth of the opening lead to early cracks , more deflections and less ultimate failure load .
The mixed use of steel bars and carbon rods in concrete beams can offer beams with different behaviour from that of steel reinforcement only. This paper studies the case of reinforcing concrete beams with two layers of bars, and the main para­meters investigated are the proportion and the distribution of carbon rods in the cross-section. Four groups containing 12 beams are tested, and each is reinforced with 4 bars located in two layers. The first group includes three control beams reinforced with steel bars, while the second includes three beams reinforced with carbon bars. Each of the third and fourth groups includes three beams reinforced with two steel bars and two carbon bars, whereas in the third group, steel bars are located above carbon ones, but in the fourth group, steel bars are located under carbon ones. Concrete beams reinforced with carbon rods in the second group exhibit a higher load carrying capacity and deflections, compared with other beams. However, the beams in the third and fourth groups have approximately the same load carrying capacity and the same behaviour up to the load level equal to 75% of their load carrying capacity. But after that, the beams in the fourth group become more deformed, compared with those of the third group.
This research aims to study the efficiency of flexural strengthening of RC beams with different lengths of CFRP strips by using (NSM) technique. The study is carried out experimentally on (14) concrete beams; the variables considered are (the length and number of CFRP strips). This is established by dividing the work into two groups: the first one includes (6) beams strengthened by variable carbon fiber strip lengths and one strip, The second group includes (6) beams strengthened by variable carbon fiber strip lengths and two strips, as well as two control beams. The results indicate that carbon fibers have a noticeable effect on increasing the bearing capacity of (NSM) strengthened beams. The results also show that strengthening the beams by CFRP and not along the length of the beam and in one layer does not contribute to increasing beam strength, but when the number of layers increases, an increase in beam strength is noticed at a rate range (40%-72%).
The horizontal Join beams with the slabs of reinforced concrete play the, the role of horizontal shear walls on the building height, Thus, the horizontal beams, columns and shear walls work together to form, the vertical resistance and horizontal loa ds resulting from wind pressure or the intensity of earthquakes As a result to the great importance of the work of the join beams between wings of shear wall in the carrier wholesale of armed concrete، we have conducted experiments on shear wall and the result experiments compare with theory scientists and researchers in high- buildings. Been compared join beams with moment of stiffness constant in the level of its confluence with wings shear walls (Hold the forces of resistance horizontal dynamic plasticity in stage). And join beams in the form of crowns with moment of stiffness variable in the level of its confluence with wings shear walls. We suggest a new theory with relationship for the change in the moment of stiffness join beams with crowns between wings of shear wall from reinforced concrete. Extract the experimental results and compare them with the proposals of the new theory, and computational methods for global theories on the subject of search And the impact of the work of the join beams with crowns between wings shear walls on the horizontal loads external pressure intensity of earthquakes or wind.
The mid-transverse section is considered one of the significant sections in the shiphull, because it exists in the middle of its calculated length, where the bindings moments reach the maximum, in consequence the hull strength can be determined thr ough the strength of this section. Its design process includes the determination of the dimensions of plats and different framing beams and considered one of the important stages in the hull design process. This research includes the estimation of calculated values of binding moments, inertia and resistant’s moments of this section area, initiated from the providing conditions of critical strength and fatigue strength. It also includes, the formals used for the determination of longitudinal elements dimensions through the transverse thicknesses and metal distribution type among them. The longitudinal strength of the hull was evaluated according the perpendicular and tangential stresses.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا