Do you want to publish a course? Click here

This research presents an empirical study about the behavior of High Strength Concrete beams under the static cyclic loading. It determines the influence of cyclic loading on the moment capacity and deflection of HSC beams. A comparison of the mome nt capacity and deflection in both kinds of loading (monotonic and cyclic loading) were achieved. High Strength Concrete mixture was designed, based on the specifications of the American code ACI 211.4R-93. Thirty six concrete beams were prepared, nine of them were tested under monotonic loading and the rest of beams were tested under cyclic loading. The cyclic loading was performed for (5,10,15) cycles, at a range from zero to 65%, 75%, 85% of the minimum expected monotonic load. The results showed that the cyclic loading have positive effect on the flexural behavior of HSC members, whereas the moment capacity increased and the deflection decreased, especially at a range from zero to 75% of the minimum expected monotonic load, when the number of cycles was 5,10,15.
The aim of this study was to evaluate and compare the effect of irrigation solutions on the dentin flexural strength .(20) extracted third molars were gathered with age avarege (18-24) years old, and the dentine bars that will be prepared and designed for study with similar dimensions (width 1 mm, thickness 2 mm, Length of at least 7 mm).
The importance of pantograph mechanism and four Bar one leads to improve of two mechanisms. As we said in last papers, decreasing maintenance and having the same goal with low weight and no friction in nowadays artificial applications, appears as a needed need. The experiment refers that using flexural hinges in a system at least leads to all of that advantages. We have a plan mechanical system consisted of pantograph mechanism and four bar one, with revolute and sliding joints. Then, we replace each revolute joint with super elastic hinge. In this way, we have a gate to build a system, strongly recommended, to achieve the same goal using minimum energy. The main goal of this paper is to elaborate a mathematical mechanism able to estimate the deviations of the considered system before and after replacing revolute hinges, taking into account the real performance of the new system through additional large displacements in the flexural hinges.
The main purpose of this research is to elaborate a mathematical apparatus able to estimate the deviations of the considered system before and after replacing revolute hinges taking into account the real performance of the novel system through large bending displacements in the flexure (flexural) hinges.
The too many uses of the five- bar mechanism and the seven-bar one in novel mechanical systems, lead us to develop the action of the both mechanisms. Compacting the both mechanisms gives ability new mechanism with dual action. It is that the new o ne is better in achieving but It's more difficult in studying from the to separately. The developing of the action appears in decreasing the maintenance and having the same goal with low weight and no friction. The experiment refers that using flexural hinges in a system at least leads to all of that advantages. We have a plane mechanical system consisted of five bar mechanism and seven bar mechanism, with revolute joints. Then, we replace each revolute joint with super elastic hinge. In this way, we have a gate to build a system,strongly recommended, to achieve the same goal using minimum energy. The main purpose of this paper is to elaborate a mathematical mechanism able to estimate the deviations of the considered system before and after replacing revolute hinges, taking into account the real performance of the novel system through additional large extra displacements in the flexural hinges.
most of companies wish to decrease maintenance and on the other hand having the same target with low weight and no friction although it may cost more, when a machine is built. Using flexural(also flexure) hinges in a system, at least, leads to all of these advantages. Considering a planar mechanical system consists of double seven bar mechanism with revolute joints, we replace each revolute joint with super elastic hinge. Doing so, we have a gate to build a system, strongly recommended, to achieve the same goal using minimum energy. The main purpose of this paper is to elaborate a mathematical apparatus able to estimate the deviations of the considered system before and after replacing revolute joints taking into account the real performance of the novel system through large bending displacements in the flexure (flexural) hinges.
The most of companies wish to decrease maintenance and have the same target with low weight and no friction even costs much money, when a machine is built. Using flexural(also flexure) hinges in a system, at least, leads to all of that advantages. We have a planar mechanical system consisted of seven and six bar mechanism, with revolute joints, after that we replace each revolute joint with super elastic hinge. Doing so we have a gate to build a system, strongly recommended, to achieve the same goal using minimum energy. The main purpose of this paper is to elaborate a mathematical apparatus able to estimate the deviations of the considered system before and after replacing revolute joints taking into account the real performance of the new system through large bending displacements in the flexure (flexural) hinges.
This research aims to study the efficiency of flexural strengthening of RC beams with different lengths of CFRP strips by using (NSM) technique. The study is carried out experimentally on (14) concrete beams; the variables considered are (the length and number of CFRP strips). This is established by dividing the work into two groups: the first one includes (6) beams strengthened by variable carbon fiber strip lengths and one strip, The second group includes (6) beams strengthened by variable carbon fiber strip lengths and two strips, as well as two control beams. The results indicate that carbon fibers have a noticeable effect on increasing the bearing capacity of (NSM) strengthened beams. The results also show that strengthening the beams by CFRP and not along the length of the beam and in one layer does not contribute to increasing beam strength, but when the number of layers increases, an increase in beam strength is noticed at a rate range (40%-72%).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا