Do you want to publish a course? Click here

Prediction of Monthly Reference Evapotranspiration in Homs Using Artificial Neural Network and Fuzzy Inference System

التنبّؤ بالتبخّر نتح المرجعي الشهري في محطّة حمص باستخدام الشبكات العصبيّة الاصطناعيّة ونظام الاستدلال الضبابي

2035   1   45   0 ( 0 )
 Publication date 2017
and research's language is العربية
 Created by علاء سليمان




Ask ChatGPT about the research

Accurate estimating and predicting of hydrological phenomena plays an influential role in the development and management of water resources, preparing of future plans according to different scenarios of climate changes. Evapotranspiration is one of the major meteorological components of the hydrologic cycle and from the most complex of them, and the accurate prediction of this parameter is very important for many water resources applications. So, this research goals to prediction of monthly reference evapotranspiration (ET0) at Homs meteostation, in the middle of Syrian Arab Republic, using Artificial Neural Networks (ANNs), and Fuzzy Inference System (FIS), depending on available climatic data, and comparision between the results of these models. The used data contained 347 monthly values of Air Temperature (T), Relative Humidity (RH), Wind Speed (WS) and Sunshine Hours (SS) (from October 1974 to December 2004). The monthly reference evapotranspiration data were estimated by the Penman Monteith method, which is the proposed method by Food and Agriculture Organization of the United Nations (FAO) as the standard method for the estimation of ET0, and used as outputs of the models. The results of this study showed that feed forward back propagation Artificial Neural Networks (FFBP-ANNs) pridected successfully the monthly ET0 using climatic data, with low values of root mean square errors (RMSE), and high values of correlation coefficients (R), and showed that the using of the monthly index as an additional input, improves the accurate of prediction of the artificial neural networks models. Also, the results showed good ability of Fuzzy Inference Models (FIS) in predicting of monthly reference evapotranspiration. Sunshine hours are the most influential single parameter for ET0 prediction (R= 97.71%, RMSE = 18.08 mm/month) during the test period, sunshine hours and wind speed are the most influential optimal combination of two parameters (R= 98.55%, RMSE = 12.49 mm/month) during the test period. The results showed high reliability for each of the artificial neural networks and fuzzy inference system with a little preference for artificial neural networks which can add the monthly index in the input layer, and there for improve the presicion of predictions. This study recommends the using of artificial intelligence techniques in modeling of complex and nonlinear phenomena which related of water resources.


Artificial intelligence review:
Research summary
تُعتبر القدرة على التقدير والتنبؤ الدقيق بالظواهر الهيدرولوجية من العوامل الأساسية في تنمية وإدارة الموارد المائية، ووضع الخطط المائية المستقبلية وفق سيناريوهات التغيرات المناخية المختلفة. التبخر نتح هو أحد أهم العوامل في الدورة الهيدرولوجية ومن أكثرها تعقيداً، والقدرة على التنبؤ الدقيق بقيم هذه الظاهرة هي من العوامل المهمة في العديد من تطبيقات الموارد المائية. تهدف هذه الدراسة إلى التنبؤ بقيم التبخر نتح المرجعي الشهري (ETo) في محطة حمص المناخية باستخدام الشبكات العصبية الاصطناعية (ANNs) ونظام الاستدلال الضبابي (FIS)، بالاعتماد على البيانات المناخية المتاحة، والمقارنة بين نتائج هذه النماذج. أظهرت نتائج الدراسة أن نماذج الشبكات العصبية الاصطناعية ذات التغذية الأمامية والانتشار العكسي للخطأ تمكنت من التنبؤ بقيم التبخر نتح المرجعي الشهري بنجاح، حيث أعطت النماذج قيماً منخفضة لمتوسط مربعات الأخطاء (RMSE) ومرتفعة لمعاملات الارتباط (R). كما أظهرت النتائج القدرة الجيدة لنماذج الاستدلال الضبابي على التنبؤ بقيم التبخر نتح المرجعي الشهري. أظهر هذا البحث الموثوقية العالية لاستخدام الشبكات العصبية الاصطناعية ونظام الاستدلال الضبابي في التنبؤ بقيم التبخر نتح المرجعي الشهري، مع وجود أفضلية بسيطة للشبكات العصبية الاصطناعية. توصي هذه الدراسة بالتوسع في استخدام تقنيات الذكاء الاصطناعي في نمذجة الظواهر المعقدة واللاخطية المتعلقة بالموارد المائية.
Critical review
دراسة نقدية: تعتبر هذه الدراسة خطوة مهمة نحو استخدام تقنيات الذكاء الاصطناعي في التنبؤ بالظواهر الهيدرولوجية، وقد أظهرت نتائج مشجعة بشأن دقة وموثوقية النماذج المستخدمة. ومع ذلك، يمكن توجيه بعض الانتقادات البناءة لتحسين الدراسة. أولاً، كان من الممكن توسيع نطاق البيانات المستخدمة لتشمل محطات مناخية أخرى في سوريا أو حتى في مناطق مختلفة من العالم، مما يزيد من تعميم النتائج. ثانياً، لم تتناول الدراسة بشكل كافٍ تأثير العوامل المناخية المتغيرة بمرور الزمن، مثل التغيرات المناخية العالمية، على دقة التنبؤات. ثالثاً، كان من الممكن إجراء مقارنة مع نماذج أخرى للذكاء الاصطناعي مثل الشبكات العصبية التلافيفية أو نماذج التعلم العميق الأخرى. وأخيراً، كان من الممكن تضمين تحليل اقتصادي لتكلفة وفوائد استخدام هذه النماذج في إدارة الموارد المائية. بشكل عام، تعتبر الدراسة قيمة وتفتح آفاقاً جديدة لاستخدام الذكاء الاصطناعي في هذا المجال، ولكن هناك مجال لتحسينها وتوسيعها في المستقبل.
Questions related to the research
  1. ما الهدف الرئيسي من هذه الدراسة؟

    الهدف الرئيسي من الدراسة هو التنبؤ بقيم التبخر نتح المرجعي الشهري في محطة حمص المناخية باستخدام الشبكات العصبية الاصطناعية ونظام الاستدلال الضبابي، والمقارنة بين نتائج هذه النماذج.

  2. ما هي البيانات المناخية المستخدمة في الدراسة؟

    البيانات المناخية المستخدمة في الدراسة تضمنت 347 قيمة شهرية لدرجة حرارة الهواء، الرطوبة النسبية، سرعة الرياح، وعدد ساعات السطوع الشمسي بين عامي 1975 و2004.

  3. ما هي النتائج الرئيسية التي توصلت إليها الدراسة؟

    النتائج الرئيسية أظهرت أن الشبكات العصبية الاصطناعية ونظام الاستدلال الضبابي يمكنهما التنبؤ بقيم التبخر نتح المرجعي الشهري بدقة عالية، مع أفضلية بسيطة للشبكات العصبية الاصطناعية.

  4. ما هي التوصيات التي قدمتها الدراسة؟

    توصي الدراسة بالتوسع في استخدام تقنيات الذكاء الاصطناعي في نمذجة الظواهر المعقدة واللاخطية المتعلقة بالموارد المائية، وإجراء دمج بين نماذج الشبكات العصبية الاصطناعية ونظام الاستدلال الضبابي وطرائق الاستيفاء المكانية.


References used
. ABDULLAH, S. MALEK, M. MUSTAPHAM A. ARYANFAR, A. Hybrid of Artificial Neural Network-Genetic Algorithm for prediction of Reference Evapotranspiration (ET0) in Arid and Semiarid Regions. Journal of Agricultural Science, Vol. 6, No. 3, 2014, 191-200
. ABDULLAH, S. MALEK, M. ABDULLAH, N. KISI, O. YAP, K. Extreme Learning Machines: A new approach for prediction of reference evapotranspiration. Journal of Hydrology, 2015, 184-195.
AL-ABOODI, A.H. Evaporation Estimation Using Adaptive Neuro-Fuzzy Inference System and Linear Regression. Eng. &Tech. Journal, Vol. 32, Part (A), No.10, 2014.
ALIPOUR, A; YARAHMADI, J; MAHDAVI, M. Comparative Study of M5 Model Tree and Artificial Neural Network in Estimating Reference Evapotranspiration Using MODIS Products. Hindawi Publishing Corporation, Journal of Climatology, 2014.
ALJUMAILI, K. K; AL-KHAFAJI, M. S; AL-AWADI, A. T. Assessment of Evapotranspiration Estimation Models for Irrigation Projects in Karbala, Iraq. Eng. & Tech. Journal, Vol.32, Part (A), No.5, 2014, 1149-1157.
ALLEN, R. G; PEREIRA, L. S; RAES, D; SMITH, M. FAO Irrigation and Drainage Paper, No. 56. Crop Evapotranspiration (guidelines for computing crop water requirements), 1998.
ANTONIC, O. KRIZAN, J. MARKI, A. BUKOVEC, D. Spatio-temporal interpolation of climatic variables over region of complex terrain using neural networks. ELSEVIER, Ecological Modelling, 2001, 255-263.
ASADI, A. VAHDAT, S. SARRAF, A. The Forcasting of Potential Evapotranspiration using time series analysis in humid and semi humid regions. American Jornal of Engineering Research, Vol. 02, Issue 12, 2013, 296-302.
ATIAA, A. QADIR, A. Using fuzzy logic for estimating monthly pan evaporation from meteorological data in Emara/ South of Iraq. Baghdad Science Journal, Vol. 9, 2012, 133-140.
AWCHI, T. A. Application of Radial Basis Function Neural Networks for Reference Evapotranspiration Prediction. 2007.
BEALE, M. H; HAGAN, M. T; DEMUTH, H. B. Neural Network Toolbox User's Guide. Math Works, R2015a.
BENZAGHTA, M. A; MOHAMMED, T. A; GHAZALI, A. H; SOOM, M. A. M. Prediction of evaporation in tropical climate using artificial neural network and climate based models. Scientific Research and Essays, Vol 7(36), 2012, 3133-3148.
CHUNG, C. H; CHIANG, Y. M; CHANG, F.J. A Spatial neural fuzzy network for estimating pan evaporation at ungauged sites. Hydrology and Earth System Sciences, 16, 2012, 255-266.
DABRAL, P. JHAJHARIA, D. MISHRA, P. HANGSHING, L. DOLEY, B. Time Series Modelling of Pan Evaporation: A Case Study in The Northeast India. Global NEST Jornal, vol 16, NO 2, 2014, 280-292.
FENG, Y; PENG, Y; CUI, N; GONG, D; ZHANG, K. Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Computers and Electronics in Agriculture, 136 (2017), 71–78.
GHAHREMAN, N; SAMETI, M. Comparison of M5 Model Tree and Artificial Neural Network for Estimating Potential Evapotranspiration in Semi-Arid Climates. DESERT, 2014, 75-81.
GRAUPE, D. Principles of Artificial Neural Networks. Advanced Series on Circuits and Systems – Vol. 6, World Scientific, 2007.
HAMDI, M. BDOUR, A. TARAWNEH, Z. Developing Reference crop Evapotranspiration Time Series Simulation Model Using Class A Pan: A Case Study for the Jordan Valley/ Jordan. Jordan Journal of Earth and Environmental Sciences, Vol. 1, No. 1, 2008, 33-44.
HUO, Z. FENG, S. KANG, S. DAI, X. Artificial Neural Network models for reference evapotranspiration in an arid area of northwest China. ELSEVIER, Journal of Arid Environments, 2012, 81-90.
JADEJA, V. Artificial neural network estimation of Reference Evapotranspiration from pan evaporation in a semi-arid environment. National Conference on Recent Trends in Engineering & Technology, 2011.
rate research

Read More

Evapotranspiration is an important component of the hydrologic cycle, and the accurate prediction of this parameter is very important for many water resources applications. Thus, the aim of this study is prediction of monthly reference evapotranspiration using Artificial Neural Networks (ANNs) and fuzzy inference system (FIS).
Evaporation is a major meteorological component of the hydrologic cycle, and it plays an influential role in the development and management of water resources. The aim of this study is to predict of the monthly pan evaporation in Homs meteostation using Artificial Neural Networks (ANNs), which based on monthly air temperature and relative humidity data only as inputs, and monthly pan evaporation as output of the network. The network was trained and verified using a back-propagation algorithm with different learning methods, number of processing elements in the hidden layer(s), and the number of hidden layers. Results shown good ability of (2-10-1) ANN to predict of monthly pan evaporation with total correlation coefficient equals 96.786 % and root mean square error equals 24.52 mm/month for the total data set. This study recommends using the artificial neural networks approach to identify the most effective parameters to predict evaporation.
Evapotranspiration forms one of the hydrology cycle elements that it's hard to measure its actual amounts in the field conditions, so it’s estimated by calculations of experimental relations that depend on climatic elements data. These estimations include different errors because of approximation processes. The research goals to accurate estimation of the monthly reference evapotranspiration amount in Safita area (on the east coast of the Mediterranean Sea), and the research depends on the technique of Artificial Neural Network (ANN), and the mathematical model was built by the (nftool), which is one of the Matlab tools, depending on monthly air temperature and relative humidity data which were taken from Safita meteorological station, and the data of monthly pan evaporation (Class A pan) has been used, after modifying its results, for the purpose of checking the performance accuracy of the network, by using Simulink technique, which is existing in Matlab Programs Package. The results of the research verify that a multi-layer ANN of error Back-propagation algorithm gives a good result in estimating monthly reference Evapo-transpiration for the used data group.
The evaporation is one of the basic components of the hydrologic cycle and it is essential for studies such as water balance, irrigation system design and water resource management, and it requires knowledge of many climatic variables. Although, th ere are many empirical formulas available for evaporation estimate, but their performances are not all satisfactory due to the complicated nature of the evaporation process. Accordingly, this paper is an attempt to assess the potential and usefulness of ANN based modeling for evaporation prediction from HAMA by using temperature, relative humidity and wind velocity. The mathematical model was built by the (nntool-box), which is one of the MATLAB tools. The feed forward back propagation network with one hidden layer has been utilised to construct the model. Different networks with different number of neurons were evaluated. Root Mean Squared Error (RMSE) was employed to evaluate the accuracy of the proposed model. The study shows that ANN (3-14-1) was the best model with RMSE (21.5mm/month) and R2 (0.97). This study suggests using other types of neural networks for estimation of evaporation
This research aims to produce a diagnosis system for breast cancer by using Neural Network depending on Back Propagation algorithm(BPNN) and Adaptive Neuro Fuzzy Inference System ‘ANFIS’, the both of studies was done using structural features of b iopsies in “Wisconson Breast Cancer “data base. In the end a comparison was made between the two studies of malignant- benign classification of breast masses of breast cancer which has accuracy 95,95% with BPNN and 91.9% with ANFIS system, this results can be consider very important if they compared with researches depending on image features that obtained of various devises like mammography, magnetic resonance.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا