يعتبر التبخّر مكوّناُ أساسيّاً في الدورة الهيدرولوجيّة، و هو يلعب دوراً مؤثّراً في تطوير و إدارة الموارد المائيّة. تهدف هذه الدراسة إلى التنبّؤ بالتبخّر الإنائي الشهري في محطة حمص المناخيّة باستخدام الشبكات العصبيّة الاصطناعيّة. و قد اعتمدت الدراسة من أجل ذلك على القيم الشهريّة لدرجة حرارة الهواء و الرطوبة النسبيّة فقط كمدخلات، واعتمدت التبخّر الإنائي الشهري كمُخرج للشبكة. استُخدمت خوارزميّة الانتشار العكسي في عمليّة تدريب و تحقيق الشبكة مع تغيير طرائق التدريب و عدد الطبقات الخفيّة و عدد العصبونات في كل طبقة منها، و قد أظهرت النتائج القدرة الجيّدة للشبكة العصبيّة الاصطناعيّة ذات الهيكليّة 2-10-1 على التنبؤ بقيم التبخر الإنائي الشهري بمعامل ارتباط كلّي R) 96.786%) و بجذر متوسّط مربّعات الأخطاء RMSE) 24.52 mm/month) لمجموعة البيانات الكاملة، و قد أوصت الدراسة باستخدام تقنية الشبكات العصبية الاصطناعية لتحديد العناصر الأكثر تأثيراً على التبخر.
Evaporation is a major meteorological component of the hydrologic cycle, and it
plays an influential role in the development and management of water resources. The aim
of this study is to predict of the monthly pan evaporation in Homs meteostation using
Artificial Neural Networks (ANNs), which based on monthly air temperature and relative
humidity data only as inputs, and monthly pan evaporation as output of the network. The
network was trained and verified using a back-propagation algorithm with different
learning methods, number of processing elements in the hidden layer(s), and the number of
hidden layers. Results shown good ability of (2-10-1) ANN to predict of monthly pan
evaporation with total correlation coefficient equals 96.786 % and root mean square error
equals 24.52 mm/month for the total data set. This study recommends using the artificial
neural networks approach to identify the most effective parameters to predict evaporation.
Artificial intelligence review:
Research summary
تتناول هذه الدراسة التنبؤ بالتبخر الإنائي الشهري في محطة حمص المناخية باستخدام الشبكات العصبية الاصطناعية. يعتبر التبخر مكونًا أساسيًا في الدورة الهيدرولوجية وله دور كبير في إدارة الموارد المائية. استخدمت الدراسة القيم الشهرية لدرجة حرارة الهواء والرطوبة النسبية كمدخلات، والتبخر الإنائي الشهري كمخرج للشبكة العصبية. تم تدريب الشبكة باستخدام خوارزمية الانتشار العكسي مع تغيير طرق التدريب وعدد الطبقات الخفية وعدد العصبونات في كل طبقة. أظهرت النتائج أن الشبكة العصبية ذات الهيكلية 1-10-2 قادرة على التنبؤ بقيم التبخر الإنائي الشهري بمعامل ارتباط كلي 96.786% وجذر متوسط مربعات الأخطاء 24.52 ملم/شهر. توصي الدراسة باستخدام الشبكات العصبية الاصطناعية لتحديد العوامل الأكثر تأثيرًا على التبخر.
Critical review
دراسة نقدية: تعتبر هذه الدراسة خطوة مهمة نحو تحسين دقة التنبؤ بالتبخر الإنائي باستخدام الشبكات العصبية الاصطناعية. ومع ذلك، يمكن توجيه بعض النقد البناء لتحسين العمل المستقبلي. أولاً، قد يكون من المفيد تضمين المزيد من العوامل المناخية مثل سرعة الرياح والإشعاع الشمسي لتحسين دقة النموذج. ثانيًا، يمكن توسيع الدراسة لتشمل محطات مناخية أخرى في سوريا أو حتى في مناطق جغرافية مختلفة للحصول على نتائج أكثر شمولية. أخيرًا، يمكن مقارنة أداء الشبكات العصبية مع نماذج أخرى مثل نماذج التعلم الآلي التقليدية أو النماذج الفيزيائية لتحسين فهم أداء الشبكات العصبية في هذا السياق.
Questions related to the research
-
ما هي المدخلات والمخرجات المستخدمة في الشبكة العصبية الاصطناعية في هذه الدراسة؟
استخدمت الدراسة القيم الشهرية لدرجة حرارة الهواء والرطوبة النسبية كمدخلات، والتبخر الإنائي الشهري كمخرج للشبكة العصبية.
-
ما هي خوارزمية التدريب المستخدمة في هذه الدراسة؟
استخدمت الدراسة خوارزمية الانتشار العكسي لتدريب الشبكة العصبية الاصطناعية.
-
ما هو معامل الارتباط الكلي الذي حققته الشبكة العصبية الاصطناعية في التنبؤ بالتبخر الإنائي الشهري؟
حققت الشبكة العصبية الاصطناعية معامل ارتباط كلي بلغ 96.786%.
-
ما هي التوصيات التي قدمتها الدراسة لتحسين دقة التنبؤ بالتبخر الإنائي؟
أوصت الدراسة باستخدام تقنية الشبكات العصبية الاصطناعية لتحديد العوامل الأكثر تأثيرًا على التبخر لتحسين دقة التنبؤ.
References used
ESLAMIAN, S. S; GOHARI, S. A; BIABANKI, M; MALEKIAN, R; Estimation of Monthly Pan Evaporation Using Artificial Neural Networks and Support Vector Machines. Journal of Applied Sciences 8 ,19, 2008, 3497-3502
BOROOMAND-NASAB, B; JOORABIAN, M. Estimating Monthly Evaporation Using Artificial Neural Networks. Journal of Environmental Science and Engineering, 5, 2011, 88-91
KUMAR, P; TIWARI, A. K. Evaporation Estimation Using Artificial Neural Network. International Journal of Computer Theory and Engineering, Vol. 4, No. 1, 2012
Accurate estimating and predicting of hydrological phenomena plays an influential role in the development and management of water resources, preparing of future plans according to different scenarios of climate changes. Evapotranspiration is one of t
Evapotranspiration is an important component of the
hydrologic cycle, and the accurate prediction of this parameter is
very important for many water resources applications. Thus, the
aim of this study is prediction of monthly reference
evapotranspiration using Artificial Neural Networks (ANNs) and
fuzzy inference system (FIS).
The evaporation is one of the basic components of the hydrologic cycle and it is
essential for studies such as water balance, irrigation system design and water resource
management, and it requires knowledge of many climatic variables. Although, th
Weather forecasting (especially rainfall) is one of the most important and challenging
operational tasks carried out by meteorological services all over the world. Itis furthermore
a complicated procedure that requires multiple specialized fields o
This paper presents a new technique based on artificial neural networks (ANNs) to
correct power factor. A synchronous motor controlled by the neural controller was used to
handle the problem of reactive power compensation of the system, in order to