Do you want to publish a course? Click here

Automated Diagnosis for Cardiac Diseases Based on ECG Signals Image Processing and Artificial Intelligence Techniques

التشخيص الآلي لأمراض القلب بالاعتماد على معالجة صور إشارات ECG و تقنيات الذكاء الصنعي

3422   8   126   5.0 ( 1 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

The entry of computer to many areas, such as medical field, led to develop new technique that has led to the prosperity of these areas, and helped doctors to detect and diagnose diseases accurately and credibility, where the experience of the doctor in addition to the accuracy of computer lead to access to the credibility of high patient and save human lives. A new approach for cardiac diseases detection and classification in ECG signals images is proposed using Adaptive Neuro Fuzzy Inference System ANFIS. The proposed approach is applied on database containing (147) ECG images, each of them accompanied with its medical report. The medical reports were used to validate the detection and classification. The proposed method achieved a relatively high accuracy (97%) in detection and classification processes. The proposed approach is developed using MATLAB, and based on its libraries, image processing, neural network and fuzzy logic.


Artificial intelligence review:
Research summary
يهدف هذا البحث إلى تطوير نظام تشخيص آلي لأمراض القلب باستخدام معالجة صور إشارات ECG وتقنيات الذكاء الاصطناعي، وبالتحديد نظام الاستدلال العصبي الضبابي المتكيف ANFIS. تم تطبيق النظام على قاعدة بيانات تتضمن 147 صورة ECG، حيث تم التحقق من صحة الاكتشاف والتصنيف باستخدام التقارير الطبية المرافقة. حقق النظام دقة عالية وصلت إلى 97% في عملية الاكتشاف والتصنيف. تم بناء النظام باستخدام برنامج MATLAB، معتمدين على مكتبات معالجة الصورة والشبكات العصبية والمنطق الضبابي. يتكون النظام من عدة مراحل تشمل المعالجة الأولية للصور، استخراج السمات، والتصنيف الآلي للأمراض. أظهرت النتائج كفاءة النظام في اكتشاف وتصنيف أمراض القلب بدقة عالية، مع توصيات لتحسين النظام من خلال تطبيق معالجة أولية مناسبة واستخلاص سمات إضافية.
Critical review
دراسة نقدية: بالرغم من أن البحث قدم نظاماً فعالاً لاكتشاف وتصنيف أمراض القلب باستخدام تقنيات الذكاء الاصطناعي، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، يمكن توسيع قاعدة البيانات المستخدمة لتشمل عينات أكثر تنوعاً من مختلف المستشفيات لضمان تعميم النتائج. ثانياً، يمكن تحسين مرحلة المعالجة الأولية للصور لتقليل نسبة الضجيج بشكل أكبر، مما قد يزيد من دقة التصنيف. ثالثاً، يمكن الاستفادة من تقنيات تعلم الآلة الأخرى مثل التعلم العميق لتحسين أداء النظام. وأخيراً، من المهم تشكيل فريق بحثي متعدد التخصصات يشمل أطباء ومهندسين لضمان دقة البيانات المستخدمة وتطبيقها بشكل صحيح.
Questions related to the research
  1. ما هو الهدف الرئيسي من البحث؟

    الهدف الرئيسي من البحث هو تطوير نظام تشخيص آلي لأمراض القلب باستخدام معالجة صور إشارات ECG وتقنيات الذكاء الاصطناعي، وبالتحديد نظام الاستدلال العصبي الضبابي المتكيف ANFIS.

  2. ما هي دقة النظام المقترح في اكتشاف وتصنيف أمراض القلب؟

    حقق النظام المقترح دقة عالية وصلت إلى 97% في عملية الاكتشاف والتصنيف.

  3. ما هي الأدوات البرمجية المستخدمة في بناء النظام؟

    تم بناء النظام باستخدام برنامج MATLAB، معتمدين على مكتبات معالجة الصورة والشبكات العصبية والمنطق الضبابي.

  4. ما هي التوصيات التي قدمها البحث لتحسين النظام؟

    التوصيات تشمل تحسين مرحلة اكتشاف المرض من خلال تطبيق معالجة أولية مناسبة على الصور، استخلاص سمات أخرى لأمراض القلب، وتشكيل فريق بحثي متعدد التخصصات يشمل أطباء ومهندسين.


References used
JANG,J. ANFIS: Adaptive – Network- Based – Fuzzy Inference System. California Univ, Berkeley, CA, USA. Vol 23, No.3, 2002, 665-685
OWEIS,R.J. ; SUNNA,M.J. A Combined Neuro–Fuzzy Approach for Classifying Image Pixels In Medical Applications. Journal of electrical engineering, VOL. 56, No. 5, 2005, 146–150
GULERA,I. ; UBEY,E.D. Ecg beat Classifier Designed By Combined Neural Network Model, Pattern Recognition Turkey, vol. 38, NO.2, 2005 , 199 – 208
rate research

Read More

The word "massive data" spread in 2017 and became the most common in the industry of advanced technology, it uses automated learning that allows computers to analyze past data and predict future data widely in familiar places. Non-automated learning professionals can use it too. To study the analytical method of statistical Automatic learning, it is necessary to identify the concept of artificial intelligence and its main classification and analytical techniques included and represent in automatic learning and deep learning. Automatic learning has developed thanks to some breakthroughs in artificial intelligence. It is an awareness of the efficient teaching of computers in addition to the invention of the Internet. Neural networks have an important role to play in teaching computers, such as humans, where they use data they can access to make decisions. There are many algorithms for learning about automatic learning. In our study, we demonstrate the methods and applications of automated statistical analysis, such as regression analysis, decision tree, middle method k and association analysis.
Through our research we develop an Expert System called Transformer Fault Detection and abbreviation Exformer, to help engineers and technical's in detecting and diagnosis of oiled power transformer faults before it going out of service. We also u se Fuzzy Logic in ambiguous data cases about gas ratios in transformer oil, which require use of fuzzy rules in knowledge base of expert system. We also discuss basis of using Artificial Neural Networks and choose number of layers, number of neurons and suitable neural network for power transformers faults analysis and compare.
This Paper offers an effective method to measure the length of the femur in Fetal Ultrasound Images, it applies a series of steps starting with the reducing amount of noise in these images, and then converted them to a binary form and uses morphol ogical operations to segment the femur and isolate it from the rest of the image objects, then it applies an Edge Detector in order to find the edges of the bone, then uses the Hough Transform to detect straight lines in the image. we apply overlapping for resulted lines on the original image, finally we choose the most significant and longest straight line which is corresponding to the length of the femur. The proposed method facilitates the measurement of the femur without the help of a physician through a series of steps.
In Artificial Intelligence field, Knowledge Engineering phase is considered the most crucial phase of the development life cycle of the Knowledge Base Systems [1]. In fact, Formal Logic in general and Modus Ponens specifically has been the dominan t tools for structuring this knowledge [3]. This led for forming a gap between the knowledge area and the information area, which depends structurally on the Set Theory in general and on the Relational Algebra in particular [1]. Thus, trying to introduce a bridge to pass this gap in structuring and treating knowledge, we have conducted a new knowledge representation model that depends structurally on (Classical and Fuzzy) Set Theory. Then we used it as the base for conducting an inference model that attempt, using a set of algebraic operations and by going through a series of stages, to reach a solution of the problem under study, in a manner very close to the one that humans usually use in treating their knowledge, taking into consideration the speed and accuracy as much as the problem allows.
The Research Aims: Syrian organizations keep large amounts of information and data about their personnel in their IT systems. This information, however, is often left unutilized or may be analyzed through statistical methods. In this study, DM is considered a solution for analyzing HR data and explore knowledge from data stored in some Syrian organization through two major stages: Stage A: Using results of Semi-Annual performance evaluation process to build prototype showed in (Fig. 6) to accomplish two tasks: 1. Building a models to predict appropriate job function for an employee through majority principle and using high accuracy result to increase the number of training data and make it self-learning model. 2. Choose most important attributes that used in classify methods to use it in personnel selection and recruitment. Stage B: Using data of Time & Attendance to analysis personnel activity through clustering methods and building many meaningful groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا