Do you want to publish a course? Click here

Electric power Transformer Faults Detection Using Artificial Intelligence Techniques

كشف أعطال محولات القدرة الكهربائية بإستخدام تقانات الذكاء الصنعي

3467   4   83   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Through our research we develop an Expert System called Transformer Fault Detection and abbreviation Exformer, to help engineers and technical's in detecting and diagnosis of oiled power transformer faults before it going out of service. We also use Fuzzy Logic in ambiguous data cases about gas ratios in transformer oil, which require use of fuzzy rules in knowledge base of expert system. We also discuss basis of using Artificial Neural Networks and choose number of layers, number of neurons and suitable neural network for power transformers faults analysis and compare.


Artificial intelligence review:
Research summary
تناقش هذه الورقة البحثية كيفية استخدام تقنيات الذكاء الاصطناعي للكشف عن أعطال محولات القدرة الكهربائية. تعتبر محولات القدرة الكهربائية من العناصر الأساسية والمكلفة في نظام القدرة الكهربائية، وأي عطل فيها يمكن أن يؤدي إلى خسائر مالية كبيرة. لذلك، تم تطوير نظام خبير يسمى Exformer لمساعدة المهندسين والفنيين في اكتشاف وتشخيص أعطال المحولات قبل خروجها من الخدمة. يعتمد النظام على تحليل الغازات المنحلة في زيت المحولات واستخدام المنطق العائم للتعامل مع البيانات الغامضة. كما تم استخدام الشبكات العصبية الاصطناعية لتدريب النظام على اكتشاف الأعطال ومقارنة أدائه مع تقنيات الذكاء الاصطناعي الأخرى. يهدف النظام إلى تحسين دقة الكشف عن الأعطال وتقليل زمن الاستنتاج، مما يجعله مناسبًا للاستخدام في الزمن الحقيقي.
Critical review
دراسة نقدية: على الرغم من أن الورقة تقدم نظامًا مبتكرًا للكشف عن أعطال محولات القدرة باستخدام تقنيات الذكاء الاصطناعي، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، لم يتم تقديم تفاصيل كافية حول كيفية تدريب الشبكات العصبية الاصطناعية وما إذا كانت البيانات المستخدمة في التدريب كافية لتمثيل جميع أنواع الأعطال المحتملة. ثانيًا، بينما تم استخدام المنطق العائم للتعامل مع البيانات الغامضة، لم يتم توضيح كيفية تأثير ذلك على دقة النظام بشكل كافٍ. ثالثًا، يمكن أن يكون هناك تحليل أعمق حول كيفية تحسين سرعة الاستنتاج في النظام الخبير، خاصة عند زيادة عدد القواعد. أخيرًا، يفضل تقديم مقارنة مع أنظمة أخرى موجودة في السوق لتوضيح مدى تفوق النظام المقترح.
Questions related to the research
  1. ما هو الهدف الرئيسي من تطوير نظام Exformer؟

    الهدف الرئيسي من تطوير نظام Exformer هو مساعدة المهندسين والفنيين في اكتشاف وتشخيص أعطال محولات القدرة الكهربائية قبل خروجها من الخدمة، وذلك لتقليل الخسائر المالية الناتجة عن هذه الأعطال.

  2. كيف يتم استخدام المنطق العائم في نظام Exformer؟

    يتم استخدام المنطق العائم في نظام Exformer للتعامل مع البيانات الغامضة أو غير المؤكدة، مثل نسب الغازات المنحلة في زيت المحولات، وذلك من خلال كتابة قواعد عائمة واستخدامها في قاعدة المعرفة للنظام الخبير.

  3. ما هي الفائدة من استخدام الشبكات العصبية الاصطناعية في هذا النظام؟

    تُستخدم الشبكات العصبية الاصطناعية في النظام لتدريب النظام على اكتشاف الأعطال بناءً على بيانات تم جمعها من مصادر هندسية مختلفة، مما يساعد في تحسين دقة الكشف عن الأعطال وتقليل زمن الاستنتاج، مما يجعله مناسبًا للاستخدام في الزمن الحقيقي.

  4. ما هي التوصيات المستقبلية التي قدمتها الورقة لتحسين النظام؟

    أوصت الورقة ببناء أنظمة خبيرة باستخدام لغات تصريحية متخصصة بنظم الذكاء الاصطناعي أو استخدام بيئات جاهزة لبناء النظم الخبيرة مثل CLIPS، وذلك لتحسين دقة وسرعة الاستنتاج في النظام.


References used
Gross Charles A. 1979- Power System Analysis . John Wiley & Sons
Glover, J. D. & Samara, M. S. 1994– Power System Analysis &Design with personal computer applications. PWS pub. Co. 2nd edition
Hamzeh, A. ,Zaidan, K. 1999– Design and Implementation of an Expert Package for Faults Diagnosis in Power systems.Paper for the 3rd Electrical Engineering Conference , Mutah University Jordan
rate research

Read More

The entry of computer to many areas, such as medical field, led to develop new technique that has led to the prosperity of these areas, and helped doctors to detect and diagnose diseases accurately and credibility, where the experience of the docto r in addition to the accuracy of computer lead to access to the credibility of high patient and save human lives. A new approach for cardiac diseases detection and classification in ECG signals images is proposed using Adaptive Neuro Fuzzy Inference System ANFIS. The proposed approach is applied on database containing (147) ECG images, each of them accompanied with its medical report. The medical reports were used to validate the detection and classification. The proposed method achieved a relatively high accuracy (97%) in detection and classification processes. The proposed approach is developed using MATLAB, and based on its libraries, image processing, neural network and fuzzy logic.
In Artificial Intelligence field, Knowledge Engineering phase is considered the most crucial phase of the development life cycle of the Knowledge Base Systems [1]. In fact, Formal Logic in general and Modus Ponens specifically has been the dominan t tools for structuring this knowledge [3]. This led for forming a gap between the knowledge area and the information area, which depends structurally on the Set Theory in general and on the Relational Algebra in particular [1]. Thus, trying to introduce a bridge to pass this gap in structuring and treating knowledge, we have conducted a new knowledge representation model that depends structurally on (Classical and Fuzzy) Set Theory. Then we used it as the base for conducting an inference model that attempt, using a set of algebraic operations and by going through a series of stages, to reach a solution of the problem under study, in a manner very close to the one that humans usually use in treating their knowledge, taking into consideration the speed and accuracy as much as the problem allows.
This paper shows a new approach to determine the presence of defects and to classify the defect type online based on Artificial Neural Networks (ANNs) in electrical power system transmission lines. This algorithm uses current and voltage signals samp led at 1 KHz as an input for the proposed ANNs without the involvement of a moving data window, so input data will be processed as a string of data. The model depends on three neural networks one for each phase and another fourth neural network for the involvement of the ground during the fault. Response time of the classifier is less than 5 ms. Moreover modern power system requires a fast, robust and accurate technique for online processing. Simulation studies show that the proposed technique is able to distinguish the fault type very accurate. Also this technique succeeded in determining of all defect types under all system conditions, so it is 100 percent accurate, so it is suitable for online application.
The word "massive data" spread in 2017 and became the most common in the industry of advanced technology, it uses automated learning that allows computers to analyze past data and predict future data widely in familiar places. Non-automated learning professionals can use it too. To study the analytical method of statistical Automatic learning, it is necessary to identify the concept of artificial intelligence and its main classification and analytical techniques included and represent in automatic learning and deep learning. Automatic learning has developed thanks to some breakthroughs in artificial intelligence. It is an awareness of the efficient teaching of computers in addition to the invention of the Internet. Neural networks have an important role to play in teaching computers, such as humans, where they use data they can access to make decisions. There are many algorithms for learning about automatic learning. In our study, we demonstrate the methods and applications of automated statistical analysis, such as regression analysis, decision tree, middle method k and association analysis.
المسؤولية الجنائية للذكاء الاصطناعي تتمثل أهمية هذه الدراسة في أهمية موضوعها الجديد والحيوي، وهو المسؤولية الجنائية الناتجة عن أخطاء الذكاء الاصطناعي في التشريع الإماراتي "دراسة مقارنة"، فعلى امتداد الخمسين سنة الماضية تضافرت الجهود العالمية في عدد من الميادين، كالفلسفة والقانون وعلم النفس وعلم المنطق والرياضيات، وعلم الأحياء وغيرها من العلوم، ومنذ سنوات بدأت هذه الجهود تحصد من ثمارها وظهرت إلى الوجود تطبيقات مذهلة للذكاء الاصطناعي، وهذا ما دفع دولة الإمارات العربية المتحدة لاستحداث وزارة للذكاء الاصطناعي وعلوم المستقبل، فهذه الخطوة تُضاف إلى سجل الإمارات الحافل بكل ما هو جديد في الثقافة والعلوم وغيرها من المجالات، فالإمارات سبّاقة في البحث وجلب أي أفكار جديدة أو عالمية وتطبيقها، والهدف من ذلك هو الارتقاء بالعمل الإداري. لأن اعتماد الإدارة على الذكاء الاصطناعي يساعدها على التكيف مع التغيرات المتلاحقة، ويساعدها أيضاً على مواجهة التحديات المتعددة والمختلفة، وبالتالي تحقيق الميزة التنافسية التي تسعى الإدارة إلى تحقيقها.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا