Do you want to publish a course? Click here

Auto-Detection of Femur Length Using Ultrasound Image Processing Techniques

الكشف الآلي لطول عظم الفخذ باستخدام تقنيات معالجة الصور فوق الصوتية

1364   0   66   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This Paper offers an effective method to measure the length of the femur in Fetal Ultrasound Images, it applies a series of steps starting with the reducing amount of noise in these images, and then converted them to a binary form and uses morphological operations to segment the femur and isolate it from the rest of the image objects, then it applies an Edge Detector in order to find the edges of the bone, then uses the Hough Transform to detect straight lines in the image. we apply overlapping for resulted lines on the original image, finally we choose the most significant and longest straight line which is corresponding to the length of the femur. The proposed method facilitates the measurement of the femur without the help of a physician through a series of steps.


Artificial intelligence review:
Research summary
يقدم البحث طريقة مبتكرة لقياس طول عظم فخذ الجنين في الصور فوق الصوتية باستخدام تقنيات معالجة الصور. تبدأ الطريقة بتقليل الضجيج في الصور، ثم تحويلها إلى الشكل الثنائي وإجراء عمليات مورفولوجية لتجزئة عظم الفخذ وعزله عن باقي عناصر الصورة. بعد ذلك، يتم استخدام كاشف حواف لاكتشاف حواف العظم، ثم تطبيق تحويل هوف لكشف الخطوط المستقيمة في الصورة. يتم اختيار المستقيم الأبرز والأطول الذي يمثل طول عظم الفخذ وحساب طوله بالميلليمتر. تم اختبار الطريقة على عدة صور ومقارنتها بالقياسات اليدوية التي يجريها الأطباء، وأظهرت النتائج تقارباً كبيراً بين القياسات الآلية واليدوية. يوضح البحث أيضاً العوامل المؤثرة على النتائج مثل تعديل القناع المستخدم في العمليات المورفولوجية وكاشف الحواف المعتمد، بالإضافة إلى تأثير تغيير بارامترات تحويل هوف. تم تطبيق الطريقة على 36 صورة فوق صوتية، وأظهرت النتائج دقة عالية في قياس طول عظم الفخذ بشكل آلي.
Critical review
دراسة نقدية: يعتبر البحث خطوة مهمة نحو تحسين دقة وسرعة قياس طول عظم الفخذ في الصور فوق الصوتية، مما يسهم في تقديم معلومات دقيقة حول نمو الجنين. ومع ذلك، يمكن أن تواجه الطريقة بعض التحديات مثل تأثير جودة الصور المدخلة وكمية الضجيج المصاحبة لها. قد يكون من المفيد توسيع قاعدة البيانات المستخدمة للاختبار لتشمل صوراً أكثر تنوعاً، وكذلك اختبار الطريقة على أجهزة تصوير طبية مختلفة لضمان تعميم النتائج. بالإضافة إلى ذلك، يمكن تحسين الطريقة من خلال دمج تقنيات تعلم الآلة لتحسين دقة الكشف وتقليل الاعتماد على المعايير الثابتة.
Questions related to the research
  1. ما هي الخطوات الأساسية التي تتبعها الطريقة المقترحة لقياس طول عظم الفخذ؟

    تبدأ الطريقة بتقليل الضجيج في الصور، ثم تحويلها إلى الشكل الثنائي، وإجراء عمليات مورفولوجية لتجزئة عظم الفخذ، ثم استخدام كاشف حواف لاكتشاف حواف العظم، وأخيراً تطبيق تحويل هوف لكشف الخطوط المستقيمة واختيار المستقيم الأبرز الذي يمثل طول عظم الفخذ.

  2. ما هي العوامل التي تؤثر على دقة القياس في الطريقة المقترحة؟

    تتأثر دقة القياس بعدة عوامل منها تعديل القناع المستخدم في العمليات المورفولوجية، نوع كاشف الحواف المعتمد، وتغيير بارامترات تحويل هوف.

  3. كيف تم اختبار الطريقة المقترحة وتقييم أدائها؟

    تم اختبار الطريقة على 36 صورة فوق صوتية، وتمت مقارنة النتائج مع القياسات اليدوية التي يجريها الأطباء. أظهرت النتائج تقارباً كبيراً بين القياسات الآلية واليدوية.

  4. ما هي الفوائد المحتملة لاستخدام الطريقة المقترحة في المجال الطبي؟

    تسهم الطريقة في تسهيل عملية التشخيص وتخفيف الأعباء على الأطباء من خلال تقديم قياسات دقيقة لطول عظم الفخذ بشكل آلي، مما يساعد في تحديد عمر الحمل ووزن الجنين وموعد الولادة.


References used
PONOMAREV. G, GELFAND. M, and KAZANOV. M, 2012- A multilevel thresholding combined with edge detection and shape-based recognition for segmentation of fetal ultrasound images. Proceedings of Challenge US: Biometric Measurements from Fetal Ultrasound Images, ISBI, pp. 17–19
ADITYA. Y, ABDULJABBAR. H, PAHL. Ch, KHIN. L, SUPRIANTO. E, 2013- Fetal Weight and Gender Estimation using Computer based Ultrasound Images Analysis. INTERNATIONAL JOURNAL OF COMPUTERS, Issue 1, Volume 7
YUSOF. SH, TAN. L, WERNER. P, ABDULJABBAR. H, PAHL. CH, BAIGI. M, HUSSIEN. R, SUPRIYANTO. E, 2013- Fetal Weight Estimation using Canny Segmented Ultrasound Images. Advances in Environment, Biotechnology and Biomedicine, ISBN: 978-1-61804-122-7
rate research

Read More

This Paper offers an innovative way for auto segmentation of the fetal head in ultrasound US images. There is high amount of noise in US images, which it affects the visual appearance of the area of head. The research depends on auto segmentation mechanism without the need for user intervention at any stage of proposed method, so this is what makes segmentation process is difficult and important at the same, because the weakness of the edges and not fully enclosed in the desired region. We relied on a Level Set method to segment the head area, after determining the initial contour automatically by the Region Properties Function. The proposed method proves effective in the head area segmentation without being influenced by noise or the existence of discontinuities in the edges of the head, despite the absence of a pre-processing stage in a series of steps applied to several ultrasound images in different sizes and sources. The last step is to calculate the secondary diameter of the output ellipse (the fetal head sector) depending on the properties of the region, and this final measurement represents the Bi Parietal Diameter BPD, an important measure enables the physician to assess gestational age and determine the birth of the fetus date. Segmentation result has been authenticated based on similarity criteria, and the final measurement accuracy has been compared with manual measurements carried out by a specialist. The comparison results showed the effectiveness of the proposed algorithm and its success by up to 98%.
The entry of computer to many areas, such as medical field, led to develop new technique that has led to the prosperity of these areas, and helped doctors to detect and diagnose diseases accurately and credibility, where the experience of the docto r in addition to the accuracy of computer lead to access to the credibility of high patient and save human lives. A new approach for cardiac diseases detection and classification in ECG signals images is proposed using Adaptive Neuro Fuzzy Inference System ANFIS. The proposed approach is applied on database containing (147) ECG images, each of them accompanied with its medical report. The medical reports were used to validate the detection and classification. The proposed method achieved a relatively high accuracy (97%) in detection and classification processes. The proposed approach is developed using MATLAB, and based on its libraries, image processing, neural network and fuzzy logic.
The various types of radial distortions generated by digital cameras are presented in this paper, like Barrel Distortions and Pincushion Distortion. Image processing techniques are used to correct the barrel distortion generated by wide-angle lenses of digital cameras. A model for barrel distortions is founded. Moreover, an algorithm for correcting this distortion is developed. This algorithm depends on finding the right parameters of the model. The grid pattern is used to detect pixels that caused the distortion and reallocate these pixels back into their original locations, making the corrected photo as close as possible to the original.
This paper presents an algorithm for designing a system that classifies standard human facial expressions which are fear, disgust, sad , surprise, anger, happiness, and the normal expression . The facial expression that is presented in the input im age of the system can be classified depending on extracting appearance features then, it is entered into neural network to complete the classification process using Matlab as a programming language. Multiple stages completed the work, which are, (collection images, pre-processing of the images, feature extraction, training neural network, classification and testing). Our system has been able to achieve the highest rating when the expression of anger reached 100 %, while the lowest rating was at the expression of sad by 30%.
This paper presents an algorithm for designing a system that classifies standard human facial expressions which are fear , disgust , sad , surprise , Anger , happiness , natural expression . The facial expression that is presented in the input image of the system can be classified depending on extracting appearance features , then they entered into neural network to complete the classification process using Matlab as a programming language.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا