Do you want to publish a course? Click here

Auto Measurement and Segmentation of Head Region in Fetal Ultrasound Images

تجزئة و قياس منطقة الرأس في الصور فوق الصوتية للجنين بشكل آلي

1053   0   84   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This Paper offers an innovative way for auto segmentation of the fetal head in ultrasound US images. There is high amount of noise in US images, which it affects the visual appearance of the area of head. The research depends on auto segmentation mechanism without the need for user intervention at any stage of proposed method, so this is what makes segmentation process is difficult and important at the same, because the weakness of the edges and not fully enclosed in the desired region. We relied on a Level Set method to segment the head area, after determining the initial contour automatically by the Region Properties Function. The proposed method proves effective in the head area segmentation without being influenced by noise or the existence of discontinuities in the edges of the head, despite the absence of a pre-processing stage in a series of steps applied to several ultrasound images in different sizes and sources. The last step is to calculate the secondary diameter of the output ellipse (the fetal head sector) depending on the properties of the region, and this final measurement represents the Bi Parietal Diameter BPD, an important measure enables the physician to assess gestational age and determine the birth of the fetus date. Segmentation result has been authenticated based on similarity criteria, and the final measurement accuracy has been compared with manual measurements carried out by a specialist. The comparison results showed the effectiveness of the proposed algorithm and its success by up to 98%.


Artificial intelligence review:
Research summary
يقدم هذا البحث طريقة مبتكرة لتجزئة رأس الجنين آلياً في الصور فوق الصوتية ذات التباين المنخفض. تعاني هذه الصور من كمية كبيرة من الضجيج الذي يؤثر على ظهور منطقة الرأس، وضعف الحواف الذي يجعل عملية التجزئة صعبة. تعتمد الطريقة المقترحة على خوارزمية ضبط المستوى لتجزئة منطقة الرأس بعد تحديد الإطار الأولي تلقائياً باستخدام تابع خصائص المنطقة. أثبتت الطريقة فعاليتها في اقتطاع منطقة الرأس دون التأثر بالضجيج أو الانقطاعات في الحواف، وتم حساب القطر الثانوي للقطع الناقص (رأس الجنين) باستخدام تابع خصائص المنطقة. تم التحقق من نتائج التجزئة بناءً على معايير التشابه، ومقارنة دقة القياس النهائي مع القياسات اليدوية التي قام بها طبيب مختص، حيث أظهرت النتائج فعالية الخوارزمية بنسبة تصل إلى 98%.
Critical review
دراسة نقدية: على الرغم من أن البحث يقدم طريقة مبتكرة وفعالة لتجزئة رأس الجنين في الصور فوق الصوتية، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، لم يتم استخدام مرحلة معالجة مسبقة للصور، مما قد يؤثر على دقة النتائج في حالات الصور ذات الضجيج العالي جداً. ثانياً، تعتمد الطريقة بشكل كبير على خوارزمية ضبط المستوى، والتي قد تكون حساسة للبارامترات المستخدمة، مما يتطلب ضبطاً دقيقاً لكل صورة على حدة. ثالثاً، لم يتم اختبار الطريقة على مجموعة واسعة من الصور من مصادر وأحجام مختلفة بشكل كافٍ لضمان تعميم النتائج. وأخيراً، يمكن تحسين البحث بإضافة مقارنة مع طرق تجزئة أخرى لتوضيح مدى تفوق الطريقة المقترحة.
Questions related to the research
  1. ما هي المشكلة الرئيسية التي يعالجها البحث؟

    يعالج البحث مشكلة تجزئة رأس الجنين في الصور فوق الصوتية ذات التباين المنخفض والضجيج العالي بشكل آلي دون تدخل المستخدم.

  2. ما هي التقنية الأساسية المستخدمة في تجزئة الصور في هذا البحث؟

    التقنية الأساسية المستخدمة هي خوارزمية ضبط المستوى لتجزئة منطقة الرأس بعد تحديد الإطار الأولي تلقائياً باستخدام تابع خصائص المنطقة.

  3. كيف تم التحقق من دقة النتائج النهائية للطريقة المقترحة؟

    تم التحقق من دقة النتائج النهائية باستخدام معايير التشابه ومقارنتها مع القياسات اليدوية التي قام بها طبيب مختص.

  4. ما هي الفائدة الطبية من القياس الناتج عن الطريقة المقترحة؟

    القياس الناتج يمثل المسافة بين الجداريين (BPD)، وهو قياس مهم يمكن الطبيب من تقدير عمر الحمل وتحديد تاريخ الولادة للجنين.


References used
SHAN, J. A fully automatic segmentation method for breast ultrasound images, UTAH STATE UNIVERSITY, Logan, Utah, 2011, Pages 12-63
CHEN, Y.; Huang, F.; Tagare, H.; and Rao, M., A coupled minimization problem for medical image segmentation with priors, Int. J. Comput. Vis. 71(3), 2007, 259–272
KALE, A. and S, AKSOY. Segmentation of Cervical Cell Images. 20th International Conference on Pattern Recognition (ICPR), 2010
rate research

Read More

This Paper offers an effective method to measure the length of the femur in Fetal Ultrasound Images, it applies a series of steps starting with the reducing amount of noise in these images, and then converted them to a binary form and uses morphol ogical operations to segment the femur and isolate it from the rest of the image objects, then it applies an Edge Detector in order to find the edges of the bone, then uses the Hough Transform to detect straight lines in the image. we apply overlapping for resulted lines on the original image, finally we choose the most significant and longest straight line which is corresponding to the length of the femur. The proposed method facilitates the measurement of the femur without the help of a physician through a series of steps.
Fetus images produced by 2D ultrasound devices are ambiguous and lack precision. This led to the need for offering a 3D visualization of the fetus, which allows visualizing width, height, and angle, in order to get additional information about the fetus, and detect fetus abnormalities. We explain in this paper our method in producing 3D models of the fetus from 2D images using a computer system without the need for changing the 2D imaging devices, and without using position sensors. Our method is based on passing the probe over the pregnant woman's abdomen and make a manual scan for the entire body of the fetus from top of the head till the bottom of his feet, then it saves this scan as a video clip then send, it to the computer which segments the video into multiple images which are saved and later processed using digital processing principles of images. Then these processed images are reconstructed to produce the volume matrix and then display it in a 3D form using 3D model construction methods. We applied our software on various fetuses of different ages and got volume images which are considered good in comparison with the images offered by currently available systems and devices. The precision of the images we got, differs according to the change in fetus pose, amniotic liquid, and fetus size, The obstetrician or gynecologist can retrieve more precise details by changing the angle and displaying volume images of certain part of the fetus body.
Breast cancer is the second leading cause of death of women in the world. The early detection gives a better chance to cure it. Physicians diagnose breast tumors by analyzing the characteristics of the lesion in ultrasound images. Shape data, provi ded by a tumor contour, is important to physicians in making diagnostic decisions. However, due to the increasing use of technology in medicine, a computer aided detection systems (CAD) have been built to help the expert. This research focuses on using a level-set method as an effective lesion segmentation method for breast ultrasound images. By applying non-local means filter on image, the unwanted speckle noise will be removed and the image's important details will be preserved. Then the initial contours are sketched using the GUI in order to apply level-set method which delineates the contour of the lesion in breast ultrasound image. The proposed method was found to determine the breast tumor contours that are very similar to manual-sketched contours (about 96%).
Total Polyphenol was studied in olive leaves collected from Lattakia area (AlQurdaha zone), where Phenolic compounds were extracted from dry Olive leaves by using two extraction methods: maceration and Ultrasonic Device. By the both two methods a study was carried out on the extraction solvent concentration effect where the extraction was done by using the mixture of Ethanol-Water with different percentages (60,70,80 %). As well, The extraction temperature effect was studied at the both methods at (20,30, 40°C); in addition to the study of the extraction time effect. At the method of Maceration Extraction, the total polyphenols amount was studied in dry olive leaves after extraction during different times (24,48,72 h). While at the Ultrasonic Extraction the times were (10,20,30 min). The study showed that the highest amount of phenolic compounds were existed in dry olive leaves which were extracted by Ultrasonic Waves with the concentration of the solvent ethanol-water 80%, temperature of 40°C, and with an extraction time of 20min.
Neural Machine Translation (NMT) for Low Resource Languages (LRL) is often limited by the lack of available training data, making it necessary to explore additional techniques to improve translation quality. We propose the use of the Prefix-Root-Post fix-Encoding (PRPE) subword segmentation algorithm to improve translation quality for LRLs, using two agglutinative languages as case studies: Quechua and Indonesian. During the course of our experiments, we reintroduce a parallel corpus for Quechua-Spanish translation that was previously unavailable for NMT. Our experiments show the importance of appropriate subword segmentation, which can go as far as improving translation quality over systems trained on much larger quantities of data. We show this by achieving state-of-the-art results for both languages, obtaining higher BLEU scores than large pre-trained models with much smaller amounts of data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا