Do you want to publish a course? Click here

Delineation of breast lesions in ultrasound images using Level-set method

استخدام مجموعة السويات في تحديد حافات الكتل في الثدي ضمن صور الأمواج فوق الصوتية

1511   0   11   0 ( 0 )
 Publication date 2014
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Breast cancer is the second leading cause of death of women in the world. The early detection gives a better chance to cure it. Physicians diagnose breast tumors by analyzing the characteristics of the lesion in ultrasound images. Shape data, provided by a tumor contour, is important to physicians in making diagnostic decisions. However, due to the increasing use of technology in medicine, a computer aided detection systems (CAD) have been built to help the expert. This research focuses on using a level-set method as an effective lesion segmentation method for breast ultrasound images. By applying non-local means filter on image, the unwanted speckle noise will be removed and the image's important details will be preserved. Then the initial contours are sketched using the GUI in order to apply level-set method which delineates the contour of the lesion in breast ultrasound image. The proposed method was found to determine the breast tumor contours that are very similar to manual-sketched contours (about 96%).


Artificial intelligence review:
Research summary
يتناول هذا البحث مشكلة الكشف المبكر عن سرطان الثدي باستخدام صور الأمواج فوق الصوتية. يهدف إلى تطوير نظام بمساعدة الحاسوب لتحديد حافات الكتل في هذه الصور باستخدام طريقة مجموعة السويات. يتضمن النظام إزالة الضجيج من الصور باستخدام مرشح وسطي لا محلي، ثم تحديد الحافات مبدئياً لتقوم بعدها طريقة مجموعة السويات بتحديد حافات الكتل بدقة. أظهرت النتائج تطابقاً بنسبة 96% بين الحافات المحددة بالبرنامج وتلك التي رسمها اختصاصي الأشعة، مما يشير إلى فعالية النظام ويفتح الباب أمام تطبيقه في العيادات والمراكز الطبية. تم تنفيذ البحث باستخدام لغة MATLAB على صور لأشخاص تتراوح أعمارهم بين 22 و70 عاماً، وتمت معالجة الصور وإزالة الضجيج منها قبل تطبيق خوارزمية التجزئة. أظهرت النتائج أن النظام قادر على تحديد حافات الكتل بدقة عالية، مما يساعد في تحسين دقة التشخيص والكشف المبكر عن سرطان الثدي.
Critical review
دراسة نقدية: يعد هذا البحث خطوة مهمة في مجال الكشف المبكر عن سرطان الثدي باستخدام تقنيات الحوسبة، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، العينة المستخدمة في الدراسة صغيرة نسبياً (10 مرضى فقط)، مما قد يؤثر على تعميم النتائج. ثانياً، لم يتم اختبار النظام على أنواع أخرى من الصور الطبية مثل التصوير بالرنين المغناطيسي أو التصوير المقطعي، مما قد يحد من تطبيقه. ثالثاً، الاعتماد الكبير على MATLAB قد يكون عائقاً في تحويل النظام إلى تطبيق عملي يمكن استخدامه في العيادات. وأخيراً، لم يتم مناقشة تأثير العوامل البيئية أو التقنية الأخرى التي قد تؤثر على دقة النظام.
Questions related to the research
  1. ما الهدف الرئيسي من البحث؟

    الهدف الرئيسي هو تطوير نظام بمساعدة الحاسوب لتحديد حافات الكتل في صور الأمواج فوق الصوتية للثدي باستخدام طريقة مجموعة السويات.

  2. ما هي نسبة التطابق بين الحافات المحددة بالبرنامج وتلك التي رسمها اختصاصي الأشعة؟

    نسبة التطابق بلغت 96%.

  3. ما هي التقنية المستخدمة لإزالة الضجيج من الصور؟

    تم استخدام مرشح وسطي لا محلي لإزالة الضجيج من الصور.

  4. ما هي اللغة البرمجية المستخدمة في تنفيذ البحث؟

    تم استخدام لغة MATLAB لتنفيذ البحث.


References used
Guo Y., (2010), " Computer-aided detection of breast cancer using ultrasound images", Utah state university, Logan, UT ,US,pages:18- 258
Gomez W., Leija L., Pereira W. C. A., Infantosi A. F. C. ,(2009), “Semiautomatic contour detection of breast lesions in ultrasonic images with morphological operators and average radial derivative function ” International Congress on Ultrasonics, Universidad de Santiago de Chile, ScienceDirect Physics Procedia Vol:3, No.1 Pages:373-380
Huang Y. and Chen D. ,(2004), “Watershed segmentation for breast tumor in 2-D Sonography” Department of Computer Science and Information Engineering, Tunghai University, Taichung, Taiwan. Ultrasound in Med. & Biol., Vol. 30, No. 5, Pages:625-636
Grau V. et al,(2004)," Improved watershed transform for medical image segmentation using prior information.", IEEE Transactions Medical Imagining Vol: 23 ,No. 4 ,Pages:447-458
rate research

Read More

A mammogram is the best option for early detection of breast cancer, Computer Aided Diagnostic systems(CADs) developed in order to improve the diagnosis of mammograms. This paper presents a proposed method to automatic images segmentation dependin g on the Otsu's method in order to detect microcalcifications and mass lesions in mammogram images. The proposed technique is based on three steps: (a) region of interest (ROI), (b) 2D wavelet transformation, and (c) OTSU thresholding application on ROI. The method tested on standard mini- MIAS database. It implemented within MATLAB software environment. Experimental results and performance evaluate results show that the proposed detection algorithm is a tool to help improve the diagnostic performance, and has the possibility and the ability to detect the breast lesions.
This study was conducted at AL Assad University Hospital in Latakia in 2012. It was a prospective study of pregnant patients admitted Department of Obstetrics and Gynecology during the period between 1\9\2012 and 1\9\2013. These patients had regular menstrual information and were in 37th week or more of gestation and did not have any disease in the mother or fetus affecting the growth of the fetus. The study included 122 patients regardless of the mode of delivery. Each patient's information was documented: estimated gestational age by LMP (last menstrual period) and estimated gestational age by ECHO using (BPD : biparietal diameter, FL: femur length) during the 24-hour from delivery, presentation and amount of liquid by ECHO. Gestational age ranged between 37 and 41.5 weeks "with an average of 38.6 weeks" and a standard deviation of 1.1 weeks" by LMP. Results showed almost convergent values based on all BPD and FL. There was also a stronger correlation between the ages of pregnancy estimated FL, LMP than BPD, LMP. Moreover, there was presence of a strong correlation between the ages of pregnancy estimated using BPD, FL and LMP when the presentation was breech. It was also observed that the presence of a good amount of liquid is necessary to estimate the age pregnancy ultrasound.
This Paper offers an innovative way for auto segmentation of the fetal head in ultrasound US images. There is high amount of noise in US images, which it affects the visual appearance of the area of head. The research depends on auto segmentation mechanism without the need for user intervention at any stage of proposed method, so this is what makes segmentation process is difficult and important at the same, because the weakness of the edges and not fully enclosed in the desired region. We relied on a Level Set method to segment the head area, after determining the initial contour automatically by the Region Properties Function. The proposed method proves effective in the head area segmentation without being influenced by noise or the existence of discontinuities in the edges of the head, despite the absence of a pre-processing stage in a series of steps applied to several ultrasound images in different sizes and sources. The last step is to calculate the secondary diameter of the output ellipse (the fetal head sector) depending on the properties of the region, and this final measurement represents the Bi Parietal Diameter BPD, an important measure enables the physician to assess gestational age and determine the birth of the fetus date. Segmentation result has been authenticated based on similarity criteria, and the final measurement accuracy has been compared with manual measurements carried out by a specialist. The comparison results showed the effectiveness of the proposed algorithm and its success by up to 98%.
In this study we used ultrasonic technology as a means of enhancing dyeing process efficiency of polyester fibers with disperse dyes, which had frequency 42kHz and, we studied the behavior of dye when the polyester dyed with (US) and with traditional dyeing methods (without US).
This research aims to developing new method for breast tumors extraction and features detection in breast magnetic resonance images by depending on clusteringand image processing algorithms. At the beginning, one of clustering algorithms was used f or image segmentation and grouping pixels by their gray scale values. Then morphological operations were implemented in order to remove noise and undesired regions, after that suspected areas were extracted. Finally some shape features for extracted area were detected, this features could be very useful for tumors diagnosis. A database consisted of 96breast magnetic resonance images were used and proposed approach was appliedby MATLAB program, and we obtainedbreast tumors extraction and its features and compared them with the doctor's opinion .
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا