Do you want to publish a course? Click here

Morphologically-Guided Segmentation For Translation of Agglutinative Low-Resource Languages

تجزئة موجهة بشكل مورجي للترجمة لغات الموارد ذات الأغلب

506   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Neural Machine Translation (NMT) for Low Resource Languages (LRL) is often limited by the lack of available training data, making it necessary to explore additional techniques to improve translation quality. We propose the use of the Prefix-Root-Postfix-Encoding (PRPE) subword segmentation algorithm to improve translation quality for LRLs, using two agglutinative languages as case studies: Quechua and Indonesian. During the course of our experiments, we reintroduce a parallel corpus for Quechua-Spanish translation that was previously unavailable for NMT. Our experiments show the importance of appropriate subword segmentation, which can go as far as improving translation quality over systems trained on much larger quantities of data. We show this by achieving state-of-the-art results for both languages, obtaining higher BLEU scores than large pre-trained models with much smaller amounts of data.



References used
https://aclanthology.org/
rate research

Read More

Low-resource languages sometimes take on similar morphological and syntactic characteristics due to their geographic nearness and shared history. Two low-resource neighboring languages found in Peru, Quechua and Ashaninka, can be considered, at first glance, two languages that are morphologically similar. In order to translate the two languages, various approaches have been taken. For Quechua, neural machine transfer-learning has been used along with byte-pair encoding. For Ashaninka, the language of the two with fewer resources, a finite-state transducer is used to transform Ashaninka texts and its dialects for machine translation use. We evaluate and compare two approaches by attempting to use newly-formed Ashaninka corpora for neural machine translation. Our experiments show that combining the two neighboring languages, while similar in morphology, word sharing, and geographical location, improves Ashaninka-- Spanish translation but degrades Quechua--Spanish translations.
We translate a closed text that is known in advance and available in many languages into a new and severely low resource language. Most human translation efforts adopt a portionbased approach to translate consecutive pages/chapters in order, which ma y not suit machine translation. We compare the portion-based approach that optimizes coherence of the text locally with the random sampling approach that increases coverage of the text globally. Our results show that the random sampling approach performs better. When training on a seed corpus of ∼1,000 lines from the Bible and testing on the rest of the Bible (∼30,000 lines), random sampling gives a performance gain of +11.0 BLEU using English as a simulated low resource language, and +4.9 BLEU using Eastern Pokomchi, a Mayan language. Furthermore, we compare three ways of updating machine translation models with increasing amount of human post-edited data through iterations. We find that adding newly post-edited data to training after vocabulary update without self-supervision performs the best. We propose an algorithm for human and machine to work together seamlessly to translate a closed text into a severely low resource language.
In this work, we investigate methods for the challenging task of translating between low- resource language pairs that exhibit some level of similarity. In particular, we consider the utility of transfer learning for translating between several Indo- European low-resource languages from the Germanic and Romance language families. In particular, we build two main classes of transfer-based systems to study how relatedness can benefit the translation performance. The primary system fine-tunes a model pre-trained on a related language pair and the contrastive system fine-tunes one pre-trained on an unrelated language pair. Our experiments show that although relatedness is not necessary for transfer learning to work, it does benefit model performance.
Dravidian languages, such as Kannada and Tamil, are notoriously difficult to translate by state-of-the-art neural models. This stems from the fact that these languages are morphologically very rich as well as being low-resourced. In this paper, we fo cus on subword segmentation and evaluate Linguistically Motivated Vocabulary Reduction (LMVR) against the more commonly used SentencePiece (SP) for the task of translating from English into four different Dravidian languages. Additionally we investigate the optimal subword vocabulary size for each language. We find that SP is the overall best choice for segmentation, and that larger dictionary sizes lead to higher translation quality.
This paper describes TenTrans' submission to WMT21 Multilingual Low-Resource Translation shared task for the Romance language pairs. This task focuses on improving translation quality from Catalan to Occitan, Romanian and Italian, with the assistance of related high-resource languages. We mainly utilize back-translation, pivot-based methods, multilingual models, pre-trained model fine-tuning, and in-domain knowledge transfer to improve the translation quality. On the test set, our best-submitted system achieves an average of 43.45 case-sensitive BLEU scores across all low-resource pairs. Our data, code, and pre-trained models used in this work are available in TenTrans evaluation examples.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا