Do you want to publish a course? Click here

Developing a model for decision support model of equipments maintenance strategy

تطوير نموذج لدعم القرار في اختيار خطة الصيانة للمعدات

2267   0   40   0 ( 0 )
 Publication date 2011
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

This research aims to develop a model of decision-making for the selection of the most appropriate strategy of the maintenance methods of equipments. A model has been developed in order to determine the maintenance plan that causes the lowest cost, whether the cost of repairing or losses result from interruptions of work for maintenance.


Artificial intelligence review:
Research summary
يهدف البحث إلى تطوير نموذج لدعم اتخاذ القرار في اختيار خطة الصيانة المثلى للمعدات المستخدمة في مشروعات التشييد، بهدف تحقيق أقل تكلفة ممكنة من خلال تقليل التوقفات والأعطال. يعتمد النموذج على تحليل ماركوف ويتطلب مراقبة سير العمل لفترة كافية لجمع البيانات اللازمة عن حالة المعدات. يتناول البحث أنواع الصيانة المختلفة مثل الوقائية، التنبؤية، والإصلاحية، ويقترح نموذجًا رياضيًا يساعد في اتخاذ القرار الأفضل بناءً على تحليل بيانات التشغيل والصيانة. يتم تحديد الحالات المختلفة للمعدات وإنشاء مصفوفة للخطط المقترحة واحتمالات الانتقال بين الحالات، ثم يتم تحليل النموذج رياضيًا لاختيار الخطة الاقتصادية الأمثل. يخلص البحث إلى أن استخدام الأدوات الرياضية يمكن أن يساعد مديري المشاريع في تحديد السياسات المثلى لصيانة المعدات، مع التأكيد على أهمية التوثيق المستمر لسجلات التشغيل والصيانة.
Critical review
دراسة نقدية: يعتبر البحث خطوة مهمة نحو تحسين إدارة الصيانة في مشروعات التشييد، إلا أنه يعتمد بشكل كبير على دقة البيانات المتاحة وسجلات الصيانة، وهو ما قد يكون تحديًا في بعض الحالات العملية. كما أن النموذج المقترح يعتمد على فرضيات معينة قد لا تكون دائمًا واقعية، مثل ثبات احتمالات الانتقال بين الحالات طوال فترة التحليل. بالإضافة إلى ذلك، قد يكون تطبيق النموذج معقدًا ويتطلب مهارات رياضية وإحصائية متقدمة، مما قد يحد من استخدامه في بعض المشروعات الصغيرة أو المتوسطة. من المهم أيضًا مراعاة العوامل البيئية والاقتصادية المختلفة التي قد تؤثر على فعالية النموذج في الواقع العملي.
Questions related to the research
  1. ما الهدف الرئيسي من البحث؟

    الهدف الرئيسي هو تطوير نموذج لدعم اتخاذ القرار في اختيار خطة الصيانة المثلى للمعدات المستخدمة في مشروعات التشييد لتحقيق أقل تكلفة ممكنة.

  2. ما هي أنواع الصيانة التي تناولها البحث؟

    تناول البحث أنواع الصيانة الوقائية، التنبؤية، والإصلاحية.

  3. ما هي الأداة الرياضية التي اعتمد عليها النموذج المقترح؟

    اعتمد النموذج المقترح على تحليل ماركوف.

  4. ما هي التحديات المحتملة في تطبيق النموذج المقترح؟

    التحديات تشمل دقة البيانات المتاحة، فرضيات النموذج التي قد لا تكون دائمًا واقعية، وتعقيد تطبيق النموذج الذي يتطلب مهارات رياضية وإحصائية متقدمة.


References used
Buffa Elwools, “Modern Production Management”, joh weley and sons in N.Y.1977
Monks J.G., “Operation Management Theory And Problems”, Mc Graw-Hill 1982
Clifton R.H., “Principles Of Planned Maintenance”, London Eward Arnold publishers , 1974
rate research

Read More

The decision-making process is the most important topics of operations research, which offers methods and tools to assist decision makers in reaching resolution. Research overture applied and analytic study for decision making state in production workshops whose belong estimation of optimal production size and overture mathematical model for production plan by dependence on Input – Output table for constraint production size in every workshop and coordination between internal demand, market, and production plan for solve recession problem and estimation of plan profits. Research eventuates to results overture Input – Output table model practicable in any production unit.
يبين المشروع كيفية تصميم نموذج باستخدام أدوات التحليل المكاني (spatial Analysis) المتاحة في برامج نظم المعلومات الجغرافية لاختيار أفضل المواقع لإنشاء منشأة سياحية في محافظة طرطوس, ثم قمنا بتخصيص معاملات إدخال للنموذج لكي يتم تطبيقه على مناطق مختلفة ب استخدام بيانات إدخال مختلفة ليتمكن مستخدمو النموذج ببساطة من إدخال المعاملات الخاصة بهم في منطقتهم دون الحاجة إلى معرفة كثير من المعلومات حول واقع عمل النموذج، وتكمن أهمية المشروع من خلال تقديم نموذج كامل باستخدام باني النماذج (ModelBuilder) ضمن برنامج ArcGIS لاختيار أفضل موقع لمنشأة سياحية تحقق مجموعة من المعايير، وتقديم واجهة مستخدم لوضع البيانات الضرورية مباشرة, وسيتم تحقيق هذه الأهمية من خلال مجموعة من الأهداف نستعرضها فيما يلي : • دراسة نظرية لنظم المعلومات الجغرافية (GIS) والتحليل المكاني حيث سنعرض مقدمة تبين أهمية برنامج ArcGIS وأدوات التحليل المكاني المتوفرة ضمن بيئة نظم المعلومات الجغرافية والتي اعتمدنا عليها لإنشاء النموذج المطلوب. • دراسة نظرية لباني النماذج (ModelBuilder) ضمن برنامج ArcGIS، ثم سنستعرض فوائد النموذج وضبط إعداداته وبنائه بخطوات متكاملة. • تطبيق منهجية التحليل المكاني باستخدام GIS)) وبناء نموذج لاختيار أفضل موقع لمنشأة سياحية تحقق مجموعة من المعايير في منطقة الدراسة، ذلك بالاعتماد على البيانات المتوفرة واشتقاق بيانات جديدة تساهم في إتمام عملية بناء النموذج، وتحديد المعاملات اللازمة التي ستظهر في واجهة المستخدم المطلوبة لاختيار الموقع الأفضل.
Multi-turn response selection models have recently shown comparable performance to humans in several benchmark datasets. However, in the real environment, these models often have weaknesses, such as making incorrect predictions based heavily on super ficial patterns without a comprehensive understanding of the context. For example, these models often give a high score to the wrong response candidate containing several keywords related to the context but using the inconsistent tense. In this study, we analyze the weaknesses of the open-domain Korean Multi-turn response selection models and publish an adversarial dataset to evaluate these weaknesses. We also suggest a strategy to build a robust model in this adversarial environment.
Transformers that are pre-trained on multilingual corpora, such as, mBERT and XLM-RoBERTa, have achieved impressive cross-lingual transfer capabilities. In the zero-shot transfer setting, only English training data is used, and the fine-tuned model i s evaluated on another target language. While this works surprisingly well, substantial variance has been observed in target language performance between different fine-tuning runs, and in the zero-shot setup, no target-language development data is available to select among multiple fine-tuned models. Prior work has relied on English dev data to select among models that are fine-tuned with different learning rates, number of steps and other hyperparameters, often resulting in suboptimal choices. In this paper, we show that it is possible to select consistently better models when small amounts of annotated data are available in auxiliary pivot languages. We propose a machine learning approach to model selection that uses the fine-tuned model's own internal representations to predict its cross-lingual capabilities. In extensive experiments we find that this method consistently selects better models than English validation data across twenty five languages (including eight low-resource languages), and often achieves results that are comparable to model selection using target language development data.
The Research Aims: Syrian organizations keep large amounts of information and data about their personnel in their IT systems. This information, however, is often left unutilized or may be analyzed through statistical methods. In this study, DM is considered a solution for analyzing HR data and explore knowledge from data stored in some Syrian organization through two major stages: Stage A: Using results of Semi-Annual performance evaluation process to build prototype showed in (Fig. 6) to accomplish two tasks: 1. Building a models to predict appropriate job function for an employee through majority principle and using high accuracy result to increase the number of training data and make it self-learning model. 2. Choose most important attributes that used in classify methods to use it in personnel selection and recruitment. Stage B: Using data of Time & Attendance to analysis personnel activity through clustering methods and building many meaningful groups.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا