Do you want to publish a course? Click here

An Evaluation Dataset and Strategy for Building Robust Multi-turn Response Selection Model

مجموعة بيانات تقييم واستراتيجية لبناء نموذج اختيار استجابة الاستجابة متعددة الدوران

602   0   0   0.0 ( 0 )
 Publication date 2021
and research's language is English
 Created by Shamra Editor




Ask ChatGPT about the research

Multi-turn response selection models have recently shown comparable performance to humans in several benchmark datasets. However, in the real environment, these models often have weaknesses, such as making incorrect predictions based heavily on superficial patterns without a comprehensive understanding of the context. For example, these models often give a high score to the wrong response candidate containing several keywords related to the context but using the inconsistent tense. In this study, we analyze the weaknesses of the open-domain Korean Multi-turn response selection models and publish an adversarial dataset to evaluate these weaknesses. We also suggest a strategy to build a robust model in this adversarial environment.



References used
https://aclanthology.org/
rate research

Read More

Recent development in NLP shows a strong trend towards refining pre-trained models with a domain-specific dataset. This is especially the case for response generation where emotion plays an important role. However, existing empathetic datasets remain small, delaying research efforts in this area, for example, the development of emotion-aware chatbots. One main technical challenge has been the cost of manually annotating dialogues with the right emotion labels. In this paper, we describe a large-scale silver dataset consisting of 1M dialogues annotated with 32 fine-grained emotions, eight empathetic response intents, and the Neutral category. To achieve this goal, we have developed a novel data curation pipeline starting with a small seed of manually annotated data and eventually scaling it to a satisfactory size. We compare its quality against a state-of-the-art gold dataset using both offline experiments and visual validation methods. The resultant procedure can be used to create similar datasets in the same domain as well as in other domains.
Despite the success of neural dialogue systems in achieving high performance on the leader-board, they cannot meet users' requirements in practice, due to their poor reasoning skills. The underlying reason is that most neural dialogue models only cap ture the syntactic and semantic information, but fail to model the logical consistency between the dialogue history and the generated response. Recently, a new multi-turn dialogue reasoning task has been proposed, to facilitate dialogue reasoning research. However, this task is challenging, because there are only slight differences between the illogical response and the dialogue history. How to effectively solve this challenge is still worth exploring. This paper proposes a Fine-grained Comparison Model (FCM) to tackle this problem. Inspired by human's behavior in reading comprehension, a comparison mechanism is proposed to focus on the fine-grained differences in the representation of each response candidate. Specifically, each candidate representation is compared with the whole history to obtain a history consistency representation. Furthermore, the consistency signals between each candidate and the speaker's own history are considered to drive a model prefer a candidate that is logically consistent with the speaker's history logic. Finally, the above consistency representations are employed to output a ranking list of the candidate responses for multi-turn dialogue reasoning. Experimental results on two public dialogue datasets show that our method obtains higher ranking scores than the baseline models.
Emotion inference in multi-turn conversations aims to predict the participant's emotion in the next upcoming turn without knowing the participant's response yet, and is a necessary step for applications such as dialogue planning. However, it is a sev ere challenge to perceive and reason about the future feelings of participants, due to the lack of utterance information from the future. Moreover, it is crucial for emotion inference to capture the characteristics of emotional propagation in conversations, such as persistence and contagiousness. In this study, we focus on investigating the task of emotion inference in multi-turn conversations by modeling the propagation of emotional states among participants in the conversation history, and propose an addressee-aware module to automatically learn whether the participant keeps the historical emotional state or is affected by others in the next upcoming turn. In addition, we propose an ensemble strategy to further enhance the model performance. Empirical studies on three different benchmark conversation datasets demonstrate the effectiveness of the proposed model over several strong baselines.
This paper presents StoryDB --- a broad multi-language dataset of narratives. StoryDB is a corpus of texts that includes stories in 42 different languages. Every language includes 500+ stories. Some of the languages include more than 20 000 stories. Every story is indexed across languages and labeled with tags such as a genre or a topic. The corpus shows rich topical and language variation and can serve as a resource for the study of the role of narrative in natural language processing across various languages including low resource ones. We also demonstrate how the dataset could be used to benchmark three modern multilanguage models, namely, mDistillBERT, mBERT, and XLM-RoBERTa.
Transformers that are pre-trained on multilingual corpora, such as, mBERT and XLM-RoBERTa, have achieved impressive cross-lingual transfer capabilities. In the zero-shot transfer setting, only English training data is used, and the fine-tuned model i s evaluated on another target language. While this works surprisingly well, substantial variance has been observed in target language performance between different fine-tuning runs, and in the zero-shot setup, no target-language development data is available to select among multiple fine-tuned models. Prior work has relied on English dev data to select among models that are fine-tuned with different learning rates, number of steps and other hyperparameters, often resulting in suboptimal choices. In this paper, we show that it is possible to select consistently better models when small amounts of annotated data are available in auxiliary pivot languages. We propose a machine learning approach to model selection that uses the fine-tuned model's own internal representations to predict its cross-lingual capabilities. In extensive experiments we find that this method consistently selects better models than English validation data across twenty five languages (including eight low-resource languages), and often achieves results that are comparable to model selection using target language development data.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا