Do you want to publish a course? Click here

An Analytical Study of RC exterior flat beam – Column Connection Under Lateral Loads

دراسة تحليلية لعقدة خارجية لجائز مخفي-عمود تحت تأثير الأحمال الجانبية

1231   0   62   0 ( 0 )
 Publication date 2011
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

RC moment-resisting frames (RCMRFs) have commonly been used for low-to-moderate rise buildings in seismic prone regions. RCMRFs can perform well when they are subjected to strong earthquake ground motions if they are properly designed and detailed to dissipate the seismic input energy through deformations in inelastic range. The connections between beams and columns thus become critical components to the performance of these structures. In conventional RCMRF connections, the width of the beam does not exceed the width of the column. Adopting a flat beam system for the design scheme provides many advantages, such as the reducing the amount of formwork required, the simplicity for repetition, and the decrease of the required story height. RCMRFs with flat beams have been used extensively, despite the lack of sufficient information on how this system behaves under earthquake loading which leads the codes to restrict the use of flat beamcolumn connections in earthquake prone regions.



References used
Committee for the development of seismic codes. Norma de Construcción Sismor resistente NCSE-94. Madrid: Spanish Ministry of Construction; 1994
Darwin D, Nmai CK. “Energy dissipation in RC beams under cyclic load” . J Struct Eng 1986;112(8):1829.46
DIANA, 2007, User Manual-DIANA Version 9.3, DIANA Analysis, P.O. Box 113, 2600 AC Delft, The Netherlands
rate research

Read More

This research deals with analytical study of exterior Beam-Column connections behavior under seismic load. Tow parameters were considered: axial load on the column and confinement of joint region with stirrups. Ansys program was used to analytica l study of three types of exterior Beam-Column connections under cyclic load. The results were shown a good agreement with general behavior of three types. The analytical results indicate that the tow parameters will improve the behavior of the connections delay cracking at joint core and increasing connection stiffness in rotation and displacement with decreasing shear value at joint.
Stability of elements require determination of their dimension, such that the resulting displacement under static or thermal loads are acceptable. Those elements have to resist the applied loads so that the structure or any element does not loss c onstancy. The most important criteria for stability is represented via element curvature under the influence of load, that load is of any type or in any position. Therefor this paper presents derivation of a theoretical equation to calculate the deflection generated from heating variation between the top and bottom surface of simple steel beam, by means of heating transfer expression.
The behavior of the basaltic shear diaphragms of the remaining buildings of ancient times was investigated as experimental research,and its resistance to natural factors and horizontal loads resulting from wind and earthquakes,to take advantage of them in the maintenance of modern buildings,which are associated with floors and beams as horizontal shear diaphragmsIn the hot and cold areas of the African continent, Asia and other similar areas,to replace the reinforced concrete shear diaphragms,and metal shear diaphragms that lose their resistance to the above factors. When the buildings are inspected, the vertical and slanted slits resulting from the side loads are placed,it was found that the appearance of the cracks related to the hardness of the shear diaphragm section, the basalt stone specifications and the design of the shear diaphragm base.The research was conducted to determine the durability, water permeability and resistance to pressure and tensile strength of basalt stone samples used in historic stone buildings and their location in laboratory methods.Horizontal loads resulting from seismic intensity were determined on the front of the building at the tile level according to international requirements and specifications.The method of calculating the basaltic shear diaphragms was applied by applying arithmetic to build a basalt stone from several floors and a basement, taking into account the characteristic resistance of basalt, depending on its density from pressure and stretching and basalt stone in calculating.
Our subject contains studying criterions which ensuring a durable serving of concrete frame joints, and then choosing two connections according to its deployment and the availability of its arithmetic relations and easy to be prepared from local ma terials, and discuss experimental results of the resent study which allow us to achieve the next part of our research,which is a structural designing programme by visual basic language to serve the work in order to be fast and precise. the last part of the subject is comprising a number of actualizations which confirm that the process of programming is correct, and then compare the results of experimental programs and code with our programme results to achieve many important ameliorations on this programme to become more easily and better.
It is well known that arch is a main part of the historical structures. Therefore, many techniques are used to strengthen these arches. In this paper, Fiber Reinforced Polymer (FRP) is used to reinforce the arch under vertical loads. Materially Non-L inear Analysis (MNLA) is performed to demonstrate the behavior of the arch with and without the FRP. On the other hand, the effect of FRP lamina thickness and length is undertaken in this research. This paper shows that a small amount of the FRP to some local areas can enhance the ultimate strength of the arch significantly.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا