Do you want to publish a course? Click here

Named entity disambiguation (NED), which involves mapping textual mentions to structured entities, is particularly challenging in the medical domain due to the presence of rare entities. Existing approaches are limited by the presence of coarse-grain ed structural resources in biomedical knowledge bases as well as the use of training datasets that provide low coverage over uncommon resources. In this work, we address these issues by proposing a cross-domain data integration method that transfers structural knowledge from a general text knowledge base to the medical domain. We utilize our integration scheme to augment structural resources and generate a large biomedical NED dataset for pretraining. Our pretrained model with injected structural knowledge achieves state-of-the-art performance on two benchmark medical NED datasets: MedMentions and BC5CDR. Furthermore, we improve disambiguation of rare entities by up to 57 accuracy points.
This paper presents the PALI team's winning system for SemEval-2021 Task 2: Multilingual and Cross-lingual Word-in-Context Disambiguation. We fine-tune XLM-RoBERTa model to solve the task of word in context disambiguation, i.e., to determine whether the target word in the two contexts contains the same meaning or not. In implementation, we first specifically design an input tag to emphasize the target word in the contexts. Second, we construct a new vector on the fine-tuned embeddings from XLM-RoBERTa and feed it to a fully-connected network to output the probability of whether the target word in the context has the same meaning or not. The new vector is attained by concatenating the embedding of the [CLS] token and the embeddings of the target word in the contexts. In training, we explore several tricks, such as the Ranger optimizer, data augmentation, and adversarial training, to improve the model prediction. Consequently, we attain the first place in all four cross-lingual tasks.
In this paper, we describe our proposed methods for the multilingual word-in-Context disambiguation task in SemEval-2021. In this task, systems should determine whether a word that occurs in two different sentences is used with the same meaning or no t. We proposed several methods using a pre-trained BERT model. In two of them, we paraphrased sentences and add them as input to the BERT, and in one of them, we used WordNet to add some extra lexical information. We evaluated our proposed methods on test data in SemEval- 2021 task 2.
This paper presents a set of experiments to evaluate and compare between the performance of using CBOW Word2Vec and Lemma2Vec models for Arabic Word-in-Context (WiC) disambiguation without using sense inventories or sense embeddings. As part of the S emEval-2021 Shared Task 2 on WiC disambiguation, we used the dev.ar-ar dataset (2k sentence pairs) to decide whether two words in a given sentence pair carry the same meaning. We used two Word2Vec models: Wiki-CBOW, a pre-trained model on Arabic Wikipedia, and another model we trained on large Arabic corpora of about 3 billion tokens. Two Lemma2Vec models was also constructed based on the two Word2Vec models. Each of the four models was then used in the WiC disambiguation task, and then evaluated on the SemEval-2021 test.ar-ar dataset. At the end, we reported the performance of different models and compared between using lemma-based and word-based models.
This paper describes our submission to SemEval 2021 Task 2. We compare XLM-RoBERTa Base and Large in the few-shot and zero-shot settings and additionally test the effectiveness of using a k-nearest neighbors classifier in the few-shot setting instead of the more traditional multi-layered perceptron. Our experiments on both the multi-lingual and cross-lingual data show that XLM-RoBERTa Large, unlike the Base version, seems to be able to more effectively transfer learning in a few-shot setting and that the k-nearest neighbors classifier is indeed a more powerful classifier than a multi-layered perceptron when used in few-shot learning.
This paper presents our approaches to SemEval-2021 Task 2: Multilingual and Cross-lingual Word-in-Context Disambiguation task. The first approach attempted to reformulate the task as a question answering problem, while the second one framed it as a b inary classification problem. Our best system, which is an ensemble of XLM-R based binary classifiers trained with data augmentation, is among the 3 best-performing systems for Russian, French and Arabic in the multilingual subtask. In the post-evaluation period, we experimented with batch normalization, subword pooling and target word occurrence aggregation methods, resulting in further performance improvements.
In this work, we present our approach for solving the SemEval 2021 Task 2: Multilingual and Cross-lingual Word-in-Context Disambiguation (MCL-WiC). The task is a sentence pair classification problem where the goal is to detect whether a given word co mmon to both the sentences evokes the same meaning. We submit systems for both the settings - Multilingual (the pair's sentences belong to the same language) and Cross-Lingual (the pair's sentences belong to different languages). The training data is provided only in English. Consequently, we employ cross-lingual transfer techniques. Our approach employs fine-tuning pre-trained transformer-based language models, like ELECTRA and ALBERT, for the English task and XLM-R for all other tasks. To improve these systems' performance, we propose adding a signal to the word to be disambiguated and augmenting our data by sentence pair reversal. We further augment the dataset provided to us with WiC, XL-WiC and SemCor 3.0. Using ensembles, we achieve strong performance in the Multilingual task, placing first in the EN-EN and FR-FR sub-tasks. For the Cross-Lingual setting, we employed translate-test methods and a zero-shot method, using our multilingual models, with the latter performing slightly better.
In this paper, we introduce our system that we participated with at the multilingual and cross-lingual word-in-context disambiguation SemEval 2021 shared task. In our experiments, we investigated the possibility of using an all-words fine-grained wor d sense disambiguation system trained purely on sense-annotated data in English and draw predictions on the semantic equivalence of words in context based on the similarity of the ranked lists of the (English) WordNet synsets returned for the target words decisions had to be made for. We overcame the multi,-and cross-lingual aspects of the shared task by applying a multilingual transformer for encoding the texts written in either Arabic, English, French, Russian and Chinese. While our results lag behind top scoring submissions, it has the benefit that it not only provides a binary flag whether two words in their context have the same meaning, but also provides a more tangible output in the form of a ranked list of (English) WordNet synsets irrespective of the language of the input texts. As our framework is designed to be as generic as possible, it can be applied as a baseline for basically any language (supported by the multilingual transformed architecture employed) even in the absence of any additional form of language specific training data.
In this paper, we introduce the first SemEval task on Multilingual and Cross-Lingual Word-in-Context disambiguation (MCL-WiC). This task allows the largely under-investigated inherent ability of systems to discriminate between word senses within and across languages to be evaluated, dropping the requirement of a fixed sense inventory. Framed as a binary classification, our task is divided into two parts. In the multilingual sub-task, participating systems are required to determine whether two target words, each occurring in a different context within the same language, express the same meaning or not. Instead, in the cross-lingual part, systems are asked to perform the task in a cross-lingual scenario, in which the two target words and their corresponding contexts are provided in two different languages. We illustrate our task, as well as the construction of our manually-created dataset including five languages, namely Arabic, Chinese, English, French and Russian, and the results of the participating systems. Datasets and results are available at: https://github.com/SapienzaNLP/mcl-wic.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا