تقدم هذه الورقة مناهجنا إلى مهمة Semeval-2021 2: مهمة غموض متعددة اللغات والتبلغة في السياق.حاول النهج الأول إعادة صياغة المهمة كمسألة مسألة الإجابة على المشكلة، في حين أن ثاني واحدة مؤطرة أنها مشكلة تصنيف ثنائية.أفضل نظام لدينا، الذي يعد فرقة من الطبقات الثنائية المصنوعة من XLM-R المدربين مع زيادة البيانات، هو من بين 3 أنظمة أفضل أداء للروسية والفرنسية والعربية في التراكب الفرعي متعدد اللغات.في فترة ما بعد التقييم، جربنا بتطبيع الدفعات، تجمع الكلمات الفرعية وأساليب تجميع الكلمات المستهدفة، مما يؤدي إلى مزيد من التحسينات الأداء.
This paper presents our approaches to SemEval-2021 Task 2: Multilingual and Cross-lingual Word-in-Context Disambiguation task. The first approach attempted to reformulate the task as a question answering problem, while the second one framed it as a binary classification problem. Our best system, which is an ensemble of XLM-R based binary classifiers trained with data augmentation, is among the 3 best-performing systems for Russian, French and Arabic in the multilingual subtask. In the post-evaluation period, we experimented with batch normalization, subword pooling and target word occurrence aggregation methods, resulting in further performance improvements.
References used
https://aclanthology.org/
In this paper, we introduce our system that we participated with at the multilingual and cross-lingual word-in-context disambiguation SemEval 2021 shared task. In our experiments, we investigated the possibility of using an all-words fine-grained wor
This paper presents the PALI team's winning system for SemEval-2021 Task 2: Multilingual and Cross-lingual Word-in-Context Disambiguation. We fine-tune XLM-RoBERTa model to solve the task of word in context disambiguation, i.e., to determine whether
In this paper, we introduce the first SemEval task on Multilingual and Cross-Lingual Word-in-Context disambiguation (MCL-WiC). This task allows the largely under-investigated inherent ability of systems to discriminate between word senses within and
This paper presents a word-in-context disambiguation system. The task focuses on capturing the polysemous nature of words in a multilingual and cross-lingual setting, without considering a strict inventory of word meanings. The system applies Natural
Identifying whether a word carries the same meaning or different meaning in two contexts is an important research area in natural language processing which plays a significant role in many applications such as question answering, document summarisati