Do you want to publish a course? Click here

An open-domain knowledge graph (KG) has entities as nodes and natural language relations as edges, and is constructed by extracting (subject, relation, object) triples from text. The task of open-domain link prediction is to infer missing relations i n the KG. Previous work has used standard link prediction for the task. Since triples are extracted from text, we can ground them in the larger textual context in which they were originally found. However, standard link prediction methods only rely on the KG structure and ignore the textual context that each triple was extracted from. In this paper, we introduce the new task of open-domain contextual link prediction which has access to both the textual context and the KG structure to perform link prediction. We build a dataset for the task and propose a model for it. Our experiments show that context is crucial in predicting missing relations. We also demonstrate the utility of contextual link prediction in discovering context-independent entailments between relations, in the form of entailment graphs (EG), in which the nodes are the relations. The reverse holds too: context-independent EGs assist in predicting relations in context.
In recent years, world business in online discussions and opinion sharing on social media is booming. Re-entry prediction task is thus proposed to help people keep track of the discussions which they wish to continue. Nevertheless, existing works onl y focus on exploiting chatting history and context information, and ignore the potential useful learning signals underlying conversation data, such as conversation thread patterns and repeated engagement of target users, which help better understand the behavior of target users in conversations. In this paper, we propose three interesting and well-founded auxiliary tasks, namely, Spread Pattern, Repeated Target user, and Turn Authorship, as the self-supervised signals for re-entry prediction. These auxiliary tasks are trained together with the main task in a multi-task manner. Experimental results on two datasets newly collected from Twitter and Reddit show that our method outperforms the previous state-of-the-arts with fewer parameters and faster convergence. Extensive experiments and analysis show the effectiveness of our proposed models and also point out some key ideas in designing self-supervised tasks.
Language models such as GPT-2 have performed well on constructing syntactically sound sentences for text auto-completion tasks. However, such models often require considerable training effort to adapt to specific writing domains (e.g., medical). In t his paper, we propose an intermediate training strategy to enhance pre-trained language models' performance in the text auto-completion task and fastly adapt them to specific domains. Our strategy includes a novel self-supervised training objective called Next Phrase Prediction (NPP), which encourages a language model to complete the partial query with enriched phrases and eventually improve the model's text auto-completion performance. Preliminary experiments have shown that our approach is able to outperform the baselines in auto-completion for email and academic-writing domains.
The goal of Event Factuality Prediction (EFP) is to determine the factual degree of an event mention, representing how likely the event mention has happened in text. Current deep learning models has demonstrated the importance of syntactic and semant ic structures of the sentences to identify important context words for EFP. However, the major problem with these EFP models is that they only encode the one-hop paths between the words (i.e., the direct connections) to form the sentence structures. In this work, we show that the multi-hop paths between the words are also necessary to compute the sentence structures for EFP. To this end, we introduce a novel deep learning model for EFP that explicitly considers multi-hop paths with both syntax-based and semantic-based edges between the words to obtain sentence structures for representation learning in EFP. We demonstrate the effectiveness of the proposed model via the extensive experiments in this work.
We propose an ensemble model for predicting the lexical complexity of words and multiword expressions (MWEs). The model receives as input a sentence with a target word or MWE and outputs its complexity score. Given that a key challenge with this task is the limited size of annotated data, our model relies on pretrained contextual representations from different state-of-the-art transformer-based language models (i.e., BERT and RoBERTa), and on a variety of training methods for further enhancing model generalization and robustness: multi-step fine-tuning and multi-task learning, and adversarial training. Additionally, we propose to enrich contextual representations by adding hand-crafted features during training. Our model achieved competitive results and ranked among the top-10 systems in both sub-tasks.
This paper presents the results and main findings of SemEval-2021 Task 1 - Lexical Complexity Prediction. We provided participants with an augmented version of the CompLex Corpus (Shardlow et al. 2020). CompLex is an English multi-domain corpus in wh ich words and multi-word expressions (MWEs) were annotated with respect to their complexity using a five point Likert scale. SemEval-2021 Task 1 featured two Sub-tasks: Sub-task 1 focused on single words and Sub-task 2 focused on MWEs. The competition attracted 198 teams in total, of which 54 teams submitted official runs on the test data to Sub-task 1 and 37 to Sub-task 2.
Turn-level user satisfaction is one of the most important performance metrics for conversational agents. It can be used to monitor the agent's performance and provide insights about defective user experiences. While end-to-end deep learning has shown promising results, having access to a large number of reliable annotated samples required by these methods remains challenging. In a large-scale conversational system, there is a growing number of newly developed skills, making the traditional data collection, annotation, and modeling process impractical due to the required annotation costs and the turnaround times. In this paper, we suggest a self-supervised contrastive learning approach that leverages the pool of unlabeled data to learn user-agent interactions. We show that the pre-trained models using the self-supervised objective are transferable to the user satisfaction prediction. In addition, we propose a novel few-shot transfer learning approach that ensures better transferability for very small sample sizes. The suggested few-shot method does not require any inner loop optimization process and is scalable to very large datasets and complex models. Based on our experiments using real data from a large-scale commercial system, the suggested approach is able to significantly reduce the required number of annotations, while improving the generalization on unseen skills.
Knowledge Graphs (KGs) have become increasingly popular in the recent years. However, as knowledge constantly grows and changes, it is inevitable to extend existing KGs with entities that emerged or became relevant to the scope of the KG after its cr eation. Research on updating KGs typically relies on extracting named entities and relations from text. However, these approaches cannot infer entities or relations that were not explicitly stated. Alternatively, embedding models exploit implicit structural regularities to predict missing relations, but cannot predict missing entities. In this article, we introduce a novel method to enrich a KG with new entities given their textual description. Our method leverages joint embedding models, hence does not require entities or relations to be named explicitly. We show that our approach can identify new concepts in a document corpus and transfer them into the KG, and we find that the performance of our method improves substantially when extended with techniques from association rule mining, text mining, and active learning.
A key challenge of dialog systems research is to effectively and efficiently adapt to new domains. A scalable paradigm for adaptation necessitates the development of generalizable models that perform well in few-shot settings. In this paper, we focus on the intent classification problem which aims to identify user intents given utterances addressed to the dialog system. We propose two approaches for improving the generalizability of utterance classification models: (1) observers and (2) example-driven training. Prior work has shown that BERT-like models tend to attribute a significant amount of attention to the [CLS] token, which we hypothesize results in diluted representations. Observers are tokens that are not attended to, and are an alternative to the [CLS] token as a semantic representation of utterances. Example-driven training learns to classify utterances by comparing to examples, thereby using the underlying encoder as a sentence similarity model. These methods are complementary; improving the representation through observers allows the example-driven model to better measure sentence similarities. When combined, the proposed methods attain state-of-the-art results on three intent prediction datasets (banking77, clinc150, hwu64) in both the full data and few-shot (10 examples per intent) settings. Furthermore, we demonstrate that the proposed approach can transfer to new intents and across datasets without any additional training.
Modelling the relationship between drinking water turbidity and other indicators of water quality in Al-Sin drinking water purification plant using Dynamic Artificial neural networks could help in the implementation of the stabilization for the per formance of the plant because these neural networks provide efficient tool to deal with the complex, dynamic and non-linear nature of purification processes. They have the ability to response to various instant changes in parameters influencing water purification. In this research, four models of feed-forward back-propagation dynamic neural network were designed to predict the effluent turbidity from Al-Sin drinking water purification plant. The models were built based on turbidity, pH and conductivity of raw water data while the effluent turbidity data were used for verify the performance accuracy of each network. The results of this research confirm the ability of dynamic neural networks in modeling and simulating the non-linearity behavior of water turbidity as well as to predict its values. They can be used in Al-Sin drinking water purification plant in order to achieve the stabilization of its performance.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا