تم في هذا البحث دمج تقنيتين من تقنيات الذكاء الصنعي، و هما خوارزمية أمثلية مستعمرة النمل
(ACO) و الخوارزمية الجينية (GA) لتحقيق أمثلية نظام التعلم المُعزّز العودي لتداول الأسهم. و يعتمد نظام التداول المقترح على خوارزمية أمثلية مستعمرة النمل و الخوارزمية الجينية لاختيار مجموعة مثالية من
المؤشرات الأساسية و الفنية لتحسين أداء التداول.
In this paper, it has
merged two techniques of the artificial intelligent, they are the
ants colony optimization algorithm and the genetic algorithm, to
The recurrent reinforcement learning trading system
optimization. The proposed trading system is based on an ant
colony optimization algorithm and the genetic algorithm to
select an optimal group of technical indicators, and fundamental
indicators.
Artificial intelligence review:
Research summary
تتناول هذه الدراسة تطوير نظام تداول مالي باستخدام تقنيات الذكاء الاصطناعي، حيث تم دمج خوارزمية أمثلية مستعمرة النمل (ACO) والخوارزمية الجينية (GA) مع نظام التعلّم المُعزّز العودي (RRL) لتحسين أداء التداول. تم اختبار النظام المقترح باستخدام بيانات سوق دمشق للأوراق المالية، وأظهرت النتائج تحسنًا في أداء التداول من خلال زيادة عدد الشركات ذات نسبة Sharpe الموجبة وتحقيق قيم أفضل لنسبتي Treynor و Jensen. يعتمد النظام على اختيار مجموعة مثالية من المؤشرات الفنية والأساسية لتحسين أداء التداول، مما يعزز الربحية والاستقرار مقارنة بأنظمة التداول السابقة RRL و GA-RRL.
Critical review
دراسة نقدية: تعتبر هذه الدراسة خطوة مهمة نحو تحسين أنظمة التداول المالي باستخدام تقنيات الذكاء الاصطناعي، إلا أن هناك بعض النقاط التي يمكن النظر فيها لتحسين البحث. أولاً، قد يكون من المفيد توسيع نطاق البيانات المستخدمة لتشمل أسواق مالية أخرى لضمان تعميم النتائج. ثانيًا، يمكن النظر في دمج تقنيات ذكاء اصطناعي أخرى مثل خوارزمية النحل أو أسراب الطيور لتحسين اختيار المؤشرات. أخيرًا، يمكن تحسين الدراسة من خلال تحليل تأثير العوامل الاقتصادية والسياسية على أداء النظام المقترح، مما يضيف بعدًا إضافيًا لفهم أداء النظام في ظروف مختلفة.
Questions related to the research
-
ما هي التقنيات المستخدمة في تطوير نظام التداول المقترح؟
تم استخدام خوارزمية أمثلية مستعمرة النمل (ACO) والخوارزمية الجينية (GA) مع نظام التعلّم المُعزّز العودي (RRL) لتطوير نظام التداول المقترح.
-
ما هي البيانات التي تم استخدامها لاختبار النظام المقترح؟
تم استخدام البيانات اليومية لسوق دمشق للأوراق المالية لاختبار النظام المقترح.
-
ما هي المؤشرات المستخدمة لتحسين أداء التداول في النظام المقترح؟
تم استخدام مجموعة من المؤشرات الفنية والأساسية التي تم اختيارها باستخدام خوارزميات ACO و GA لتحسين أداء التداول.
-
ما هي النتائج الرئيسية التي توصلت إليها الدراسة؟
أظهرت النتائج تحسنًا في أداء التداول من خلال زيادة عدد الشركات ذات نسبة Sharpe الموجبة وتحقيق قيم أفضل لنسبتي Treynor و Jensen، مما يعزز الربحية والاستقرار مقارنة بأنظمة التداول السابقة.
References used
J. Moody and M. Saffell, “Reinforcement Learning for Trading Systems and Portfolios,” Kdd, pp. 279–283, 1998
G. Molina, “Stock Trading with Recurrent Reinforcement Learning ( RRL ),” Direct
J. Cumming and L. Dickens, “An Investigation into the Use of Reinforcement Learning Techniques within the Algorithmic Trading Domain,” 2015
The Research Aims:
Syrian organizations keep large amounts of information and data about their
personnel in their IT systems. This information, however, is often left unutilized or
may be analyzed through statistical methods. In this study, DM is
This research tackles autolanding a power-off fixed-wing Unmanned Aerial Vehicle (UAV) on a
level or uphill landing strip with limited dimensions. New approaches to path planning, guidance,
and control are proposed for the final approach and landin
In this research we introduce
a regularization based feature selection algorithm to benefit from
sparsity and feature grouping properties and incorporate it into the
medical image classification task. Using this group sparsity (GS)
method, the wh
The word "massive data" spread in 2017 and became the most common in the industry of advanced technology, it uses automated learning that allows computers to analyze past data and predict future data widely in familiar places. Non-automated learning
This paper presents a method for finding online adaptive optimal
controllers for continuous-time linear systems without knowing the
system dynamical matrices. The proposed method employs one of
Intelligent Operations Research Techniques, this tech