Do you want to publish a course? Click here

Developing an effective system for medical image classification using Group Sparsity and fuzzy enhancement

تطوير نظام فعال لتصنيف الصور الطبية باستخدام خلخلة المجموعة و التحسين الضبابي

1675   3   39   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

In this research we introduce a regularization based feature selection algorithm to benefit from sparsity and feature grouping properties and incorporate it into the medical image classification task. Using this group sparsity (GS) method, the whole group of features are either selected or removed. The basic idea in GS is to delete features that do not affect the retrieval process, instead of keeping them and giving these features small weights. Therefore, GS improves system by increasing accuracy of the results, plus reducing space and time requirements needed by the system.


Artificial intelligence review:
Research summary
تقدم هذه الورقة البحثية نظامًا فعالًا لتصنيف الصور الطبية باستخدام خلخلة المجموعة والتحسين الضبابي. تزداد كمية الصور الطبية المنتجة في المستشفيات بشكل هائل، مما يستدعي الحاجة إلى طريقة فعالة لتصنيف وتوصيف هذه الصور آليًا باستخدام المحتوى، نظرًا للأخطاء الموجودة في الأوسمة المرتبطة بها. تعتمد العديد من الأبحاث على السمات المحددة مسبقًا لتوصيف الصور، ولكنها لم تدرس خصائص هذه السمات والعلاقات بينها. في هذا البحث، تم تقديم خوارزمية اختيار السمات المستندة إلى الضبط للاستفادة من خصائص الخلخلة وتجميع السمات وإدراجها في مهمة تصنيف الصور الطبية. تعتمد طريقة خلخلة المجموعة على حذف السمات التي لا تؤثر على عملية الاستعادة بدلاً من الإبقاء عليها وإعطائها أوزان قليلة. أظهرت نتائج الدراسة على قاعدة بيانات مشروع IRMA دقة تصنيف تصل إلى 93%، مما يعزز فعالية النظام المقترح في التعامل مع تحديات الصور الطبية.
Critical review
دراسة نقدية: على الرغم من أن البحث يقدم نظامًا مبتكرًا وفعالًا لتصنيف الصور الطبية، إلا أن هناك بعض النقاط التي يمكن تحسينها. أولاً، النموذج يعتمد بشكل كبير على البيانات المتاحة من مشروع IRMA، مما قد يحد من تعميم النتائج على قواعد بيانات أخرى. ثانيًا، لم يتم اختبار النظام بشكل كافٍ على أنواع مختلفة من الصور الطبية مثل صور الرنين المغناطيسي أو الصور الشعاعية. ثالثًا، يمكن تحسين النموذج من خلال دمج تقنيات تعلم الآلة الحديثة مثل الشبكات العصبية العميقة التي أثبتت فعاليتها في تصنيف الصور. أخيرًا، يجب إجراء المزيد من الدراسات لتقييم أداء النظام في بيئات سريرية حقيقية.
Questions related to the research
  1. ما هي المشكلة الرئيسية التي يعالجها البحث؟

    يعالج البحث مشكلة الحاجة إلى طريقة فعالة لتصنيف وتوصيف الصور الطبية آليًا باستخدام المحتوى، نظرًا للأخطاء الموجودة في الأوسمة المرتبطة بها.

  2. ما هي الخوارزمية المستخدمة في البحث لتحسين عملية تصنيف الصور الطبية؟

    تم استخدام خوارزمية اختيار السمات المستندة إلى الضبط، والتي تعتمد على خلخلة المجموعة لتحسين عملية تصنيف الصور الطبية.

  3. ما هي دقة التصنيف التي حققها النظام المقترح في البحث؟

    حقق النظام المقترح دقة تصنيف تصل إلى 93% عند اختباره على قاعدة بيانات مشروع IRMA.

  4. ما هي النقاط التي يمكن تحسينها في البحث؟

    يمكن تحسين البحث من خلال اختبار النظام على أنواع مختلفة من الصور الطبية، دمج تقنيات تعلم الآلة الحديثة، وإجراء المزيد من الدراسات لتقييم أداء النظام في بيئات سريرية حقيقية.


References used
Lehmann, Thomas M., et al., et al. Automatic categorization of medical images for content-based retrieval and data mining. s.l. : Computerized Medical Imaging and Graphics, 2005
Kohnen, Michael, et al., et al. Quality of DICOM header information for image categorization. 2002
Zhang, Shaoting, et al., et al. Automatic Image Annotation and Retrieval Using Group Sparsity. s.l. : IEEE, 2012
rate research

Read More

One ofa car's suspension system functions is to isolate vibrations resulting from road on the driver and ensure a comfortable ride. But the design of control systems for semi-active suspension systems is difficult because of the non-linearity of the constituent elements of these systems which make the researches related to it characterized by complexity. So in order to improve the performance of semi-active suspension systems without bearing the effort of designing a model based controller, a control system is designed using self-organizing fuzzy controller based on the principle of delay-in-penalty to control a semi-active suspension system which uses a magneto rheological damper. The controller tries to enhance system performance using the desired response as it is described in the penalty table. The fuzzy logic controller is based on two inputs namely sprung mass velocity and unsprung mass velocity. Using a quarter car model with 2 degree-of-freedom the system is modeled and simulated in MATLAB &Simulink® and the results are compared to the widely used sky-hook strategy. the simulation showed the ability of the self-organizing fuzzy controller to provide good results in minimizing sprung mass acceleration in variousroad profiles compared to sky-hookstrategy.
The amount of digital images that are produced in hospitals is increasing rapidly. Effective medical images can play an important role in aiding in diagnosis and treatment, they can also be useful in the education domain for healthcare students by explaining with these images will help them in their studies, new trends for image retrieval using automatic image classification has been investigated for the past few years. Medical image Classification can play an important role in diagnostic and teaching purposes in medicine. For these purposes different imaging modalities are used. There are many classifications created for medical images using both grey-scale and color medical images. In this paper, different algorithms in every step involved in medical image processing have been studied. One way is the algorithms of preprocessing step such as Median filter [1], Histogram equalization (HE) [2], Dynamic histogram equalization (DHE), and Contrast Limited Adaptive Histogram Equalization (CLAHE). Second way is the Feature Selection and Extraction step [3,4], such as Gray Level Co-occurrence Matrix(GLCM). Third way is the classification techniques step, which is divided into three ways in this paper, first one is texture classification techniques, second one is neural network classification techniques, and the third one is K-Nearest Neighbor classification techniques. In this paper, we have use MRI brain image to determine the area of tumor in brain. The steps started by preprocessing operation to the image before inputting it to algorithm. The image was converted to gray scale, later on remove film artifact using special algorithm, and then remove the Skull portions from the image without effect on white and gray matter of the brain using another algorithm, After that the image enhanced using optimized median filter algorithm and remove Impurities that produced from first and second steps.
In this paper, it has merged two techniques of the artificial intelligent, they are the ants colony optimization algorithm and the genetic algorithm, to The recurrent reinforcement learning trading system optimization. The proposed trading system is based on an ant colony optimization algorithm and the genetic algorithm to select an optimal group of technical indicators, and fundamental indicators.
Evapotranspiration is an important component of the hydrologic cycle, and the accurate prediction of this parameter is very important for many water resources applications. Thus, the aim of this study is prediction of monthly reference evapotranspiration using Artificial Neural Networks (ANNs) and fuzzy inference system (FIS).
In recent years, the problem of classifying objects in images has increased by using deep learning as a result of the industrial sector requirements. Despite of many algorithms used in this field, such as Deep Learning Neural Network DNN and Convolut ional Neural Network CNN, the proposed systems to address this problem Lack of comprehensive solution to the difficulties of long training time and floating memory during the training process, low rating classification. Convolutional Neural Networks (CNNs), which are the most used algorithms for this task, were a mathematical pattern for analyzing images data. A new deep-traversal network pattern was proposed to solve the above problems. The aim of the research is to demonstrate the performance of the recognition system using CNNs networks on the available memory and training time by adapting appropriate variables for the bypass network. The database used in this research is CIFAR10, which consists of 60000 colorful images belonging to ten categories, as every 6,000 images are for a class of these items. Where there are 50,000 training images and 10,000 test tubes. When tested on a sample of selected images from the CIFAR10 database, the model achieved a rating classification of 98.87%.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا