يوجد في الواقع كثير من المسائل تتمثل بنمذجة العلاقات بين الكيانات ثم توقع العلاقات المستقبلية, فمثلاً اقت ارح منتج لزبون معين أو توقع من سيتحدث عن موضوع معين على الشبكة الاجتماعية. يمكن باستخدام هذه الطريقة نمذجة معطيات كثيرة ذات أبعاد عديدة ودمج أكتر من مصدر من البيانات (لنمذجة السياق) مع القدرة على التوسعة, إذ يمكن بشروط معينة جعل التعقيد خطي.
Given a heterogeneous social network, can we forecast its future? Can we predict who will start using a given hashtag on twitter? Can we leverage side information, such as who retweets or follows whom, to improve our membership forecasts? We present TENSORCAST, a novel method that forecasts time-evolving networks more accurately than the current state of the art methods by incorporating multiple data sources in coupled tensors. TENSORCAST is (a) scalable, being linearithmic on the number of connections; (b) effective, achieving over 20% improved precision on top-1000 forecasts of community members; (c) general, being applicable to data sources with a different structure. We run our method on multiple real-world networks, including DBLP and a Twitter temporal network with over 310 million nonzeros, where we predict the evolution of the activity of the use of political hashtags.
Artificial intelligence review:
Research summary
تتناول الورقة البحثية المقدمة من سليم فارس ومحمد راشد صبرة موضوع التنبؤ واستخراج الأحداث ذات الطابع الزمني باستخدام طريقة جديدة تسمى TENSORCAST. تهدف هذه الطريقة إلى تحسين دقة التنبؤات في الشبكات الاجتماعية المتطورة زمنياً من خلال دمج مصادر بيانات متعددة في تنسورات متزاوجة. تتميز TENSORCAST بأنها قابلة للتوسع وفعالة، حيث تحقق تحسيناً بنسبة 20% في دقة التنبؤات لأفضل 1000 عضو في المجتمع. تم اختبار الطريقة على شبكات حقيقية مثل DBLP وشبكة تويتر الزمنية، حيث تم التنبؤ بتطور استخدام الهاشتاغات السياسية. تعتمد الطريقة على تحليل التنسور، وهو مصفوفة متعددة الأبعاد، لاكتشاف العوامل الخفية وتقدير القيم المفقودة. تشمل خطوات الطريقة المقترحة تحليل التنسور غير السالب لزوج من التنسورات، توسيع عوامل الزمن، وحساب أكبر K قيمة من التنسور الموسع. تم مقارنة TENSORCAST مع نماذج أخرى مثل CP Forecasting وTrimin، حيث أظهرت تفوقها في عدة جوانب مثل القدرة على التعامل مع معلومات السياق وإدراك الزمن. تعتمد الطريقة على خوارزمية طموحة لإيجاد أكبر عنصر بدمج أرتال العوامل المستخرجة سابقاً، مما يمكن من التنبؤ بالأحداث المستقبلية واكتشاف الاتجاهات البارزة في البيانات الزمنية.
Critical review
تعتبر الورقة البحثية المقدمة من سليم فارس ومحمد راشد صبرة مساهمة قيمة في مجال التنبؤ واستخراج الأحداث ذات الطابع الزمني باستخدام تحليل التنسور. ومع ذلك، يمكن تقديم بعض الملاحظات النقدية لتحسين العمل. أولاً، قد يكون من المفيد توضيح المزيد من التفاصيل حول كيفية اختيار العوامل الخفية (latent factors) وتأثيرها على دقة التنبؤات. ثانياً، على الرغم من أن الطريقة أثبتت فعاليتها على شبكات حقيقية مثل DBLP وتويتر، إلا أن تطبيقها على نطاق أوسع من البيانات والمجالات المختلفة يمكن أن يضيف قيمة أكبر للعمل. ثالثاً، يمكن تعزيز الورقة بمزيد من التحليل المقارن مع نماذج أخرى مشابهة لتوضيح الفروق الدقيقة في الأداء. وأخيراً، يمكن تحسين العرض البصري للنتائج والخوارزميات لتسهيل فهمها على القراء غير المتخصصين في هذا المجال.
Questions related to the research
-
ما هي الطريقة الجديدة التي تم تقديمها في الورقة لتحسين دقة التنبؤات في الشبكات الاجتماعية؟
الطريقة الجديدة التي تم تقديمها هي TENSORCAST، والتي تعتمد على دمج مصادر بيانات متعددة في تنسورات متزاوجة لتحسين دقة التنبؤات.
-
ما هي المزايا الرئيسية لطريقة TENSORCAST مقارنة بالطرق الأخرى؟
تتميز TENSORCAST بأنها قابلة للتوسع وفعالة، حيث تحقق تحسيناً بنسبة 20% في دقة التنبؤات لأفضل 1000 عضو في المجتمع، كما أنها قادرة على التعامل مع معلومات السياق وإدراك الزمن.
-
ما هي البيانات التي تم اختبار طريقة TENSORCAST عليها؟
تم اختبار طريقة TENSORCAST على شبكات حقيقية مثل DBLP وشبكة تويتر الزمنية، حيث تم التنبؤ بتطور استخدام الهاشتاغات السياسية.
-
ما هي الخطوات الرئيسية في الطريقة المقترحة لتحليل التنسور؟
تشمل الخطوات الرئيسية في الطريقة المقترحة تحليل التنسور غير السالب لزوج من التنسورات، توسيع عوامل الزمن، وحساب أكبر K قيمة من التنسور الموسع.
References used
Y. Matsubara, Y. Sakurai, C. Faloutsos, T. Iwata, and M. Yoshikawa, “Fast mining and forecasting of complex time-stamped events,” in Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2012, pp. 271–279
M. Araujo, P. Ribeiro, C. Faloutsos. " TensorCast: Forecasting with Context using Coupled Tensors", on IEEE International Conference 2017 on Data Mining (ICDM)
حظيت نمذجة وتوقع السلاسل الزمنية بأهمية كبيرة في العديد من المجالات التطبيقية كالتنبؤ بالطقس وأسعار العملات ومعدلات استهلاك الوقود والكهرباء، إن توقع السلاسل الزمنية من شأنه أن يزود المنظمات والشركات بالمعلومات الضرورية لاتخاذ القرارات الهامة، وبسبب
We have introduced a new applications for Dynamic Factor Graphs, consisting in topic modeling, text classification and information retrieval. DFGs are tailored here to sequences of time-stamped documents.
Based on the auto-encoder architecture, our
Abductive reasoning starts from some observations and aims at finding the most plausible explanation for these observations. To perform abduction, humans often make use of temporal and causal inferences, and knowledge about how some hypothetical situ
The study aims at comparing ARIMA models and the exponential
smoothing method in forecasting. This study also highlights the special
and basic concepts of ARIMA model and the exponential smoothing
method.
The comparison focuses on the ability
In this thesis proposal, we explore the application of event extraction to literary texts. Considering the lengths of literary documents modeling events in different granularities may be more adequate to extract meaningful information, as individual