Do you want to publish a course? Click here

Although neural models have shown strong performance in datasets such as SNLI, they lack the ability to generalize out-of-distribution (OOD). In this work, we formulate a few-shot learning setup and examine the effects of natural language explanation s on OOD generalization. We leverage the templates in the HANS dataset and construct templated natural language explanations for each template. Although generated explanations show competitive BLEU scores against ground truth explanations, they fail to improve prediction performance. We further show that generated explanations often hallucinate information and miss key elements that indicate the label.
Much of recent progress in NLU was shown to be due to models' learning dataset-specific heuristics. We conduct a case study of generalization in NLI (from MNLI to the adversarially constructed HANS dataset) in a range of BERT-based architectures (ada pters, Siamese Transformers, HEX debiasing), as well as with subsampling the data and increasing the model size. We report 2 successful and 3 unsuccessful strategies, all providing insights into how Transformer-based models learn to generalize.
To build robust question answering systems, we need the ability to verify whether answers to questions are truly correct, not just good enough'' in the context of imperfect QA datasets. We explore the use of natural language inference (NLI) as a way to achieve this goal, as NLI inherently requires the premise (document context) to contain all necessary information to support the hypothesis (proposed answer to the question). We leverage large pre-trained models and recent prior datasets to construct powerful question conversion and decontextualization modules, which can reformulate QA instances as premise-hypothesis pairs with very high reliability. Then, by combining standard NLI datasets with NLI examples automatically derived from QA training data, we can train NLI models to evaluate QA models' proposed answers. We show that our approach improves the confidence estimation of a QA model across different domains, evaluated in a selective QA setting. Careful manual analysis over the predictions of our NLI model shows that it can further identify cases where the QA model produces the right answer for the wrong reason, i.e., when the answer sentence cannot address all aspects of the question.
Abductive reasoning starts from some observations and aims at finding the most plausible explanation for these observations. To perform abduction, humans often make use of temporal and causal inferences, and knowledge about how some hypothetical situ ation can result in different outcomes. This work offers the first study of how such knowledge impacts the Abductive NLI task -- which consists in choosing the more likely explanation for given observations. We train a specialized language model LMI that is tasked to generate what could happen next from a hypothetical scenario that evolves from a given event. We then propose a multi-task model MTL to solve the Abductive NLI task, which predicts a plausible explanation by a) considering different possible events emerging from candidate hypotheses -- events generated by LMI -- and b) selecting the one that is most similar to the observed outcome. We show that our MTL model improves over prior vanilla pre-trained LMs fine-tuned on Abductive NLI. Our manual evaluation and analysis suggest that learning about possible next events from different hypothetical scenarios supports abductive inference.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا