Do you want to publish a course? Click here

Building a forecasting model for annual rainfall in Husn Suleiman station using mathematical modeling

بناء نموذج للتنبؤ بالهطل المطري السنوي في محطة حصن سليمان باستخدام النمذجة الرياضية

1914   1   65   0 ( 0 )
 Publication date 2016
and research's language is العربية
 Created by Shamra Editor




Ask ChatGPT about the research

Due to the importance of water, and the increasing of demand at the present time due to the tremendous development in all spheres of economic and social life, and as the evaluation, planning and management of water sources, one of the important topics in human life, especially in areas with scarce rainfall or where rainfall distribution is poor or irregular so cannot be used for different purposes. From here, the importance of the research in forecasting rainfall in the Husn Suleiman station, comes, and to achieve this goal the data of time series for the average annual rainfall precipitation been used in Husn Suleiman station which located in the province of Tartous on longitude 36 ° 15 ' andlatitude 34 ° 56', for the period between 1959-2011, The methodology of "Box – Jenkins" been used in the study, this methodology relies on finding future forecasts from original data series. Also,the applications “MINITAB, EXCEL” have been used in the statistical side and the preparation of the study results. As a result, the study found that rainfall value in the 'Husn Suleiman station' decreasing, this decline amounted to 3.7 mm per year during the monitoring period. Also, the appropriate (ARIMA) model for the series was build after it passed the various statistical tests are required, and founded that ARIMA(1,0,0) model is a good representation of the data and the ARIMA(4,1,5) model is the right model to forecast future rainfall.


Artificial intelligence review:
Research summary
تتناول هذه الدراسة بناء نموذج للتنبؤ بالهطل المطري السنوي في محطة حصن سليمان باستخدام النمذجة الرياضية. تم استخدام بيانات السلسلة الزمنية لمعدل الهطل المطري السنوي في محطة حصن سليمان الواقعة في محافظة طرطوس للفترة بين عامي 1959-2011. اعتمدت الدراسة على منهجية بوكس-جنكنز لإيجاد التنبؤات المستقبلية للهطل المطري. استخدمت برامج Minitab وExcel في الجانب الإحصائي وإعداد نتائج الدراسة. توصلت الدراسة إلى أن الهطل المطري في محطة حصن سليمان في تناقص بمعدل 3.7 ملم سنوياً خلال فترة الرصد. تم بناء نموذج ARIMA المناسب للسلسلة الزمنية، حيث كان النموذج ARIMA(1,0,0) هو الأنسب لتمثيل البيانات، والنموذج ARIMA(4,1,5) هو الأنسب للتنبؤ بالهطل المطري المستقبلي. أكدت الدراسة على أهمية استخدام معايير أداء التنبؤ مثل RMSE وMAE وMAPE لاختيار النموذج الأفضل. كما أوصت الدراسة باستخدام الشبكات العصبية الصناعية (ANN) لمقارنة نتائجها مع منهجية بوكس-جنكنز.
Critical review
دراسة نقدية: تعتبر هذه الدراسة من الدراسات الهامة في مجال التنبؤ بالهطل المطري، حيث استخدمت منهجية بوكس-جنكنز المعروفة بدقتها في تحليل السلاسل الزمنية. ومع ذلك، يمكن الإشارة إلى بعض النقاط التي قد تعزز من قوة الدراسة. أولاً، كان من الممكن تضمين المزيد من المتغيرات المناخية الأخرى التي قد تؤثر على الهطل المطري، مثل درجات الحرارة والرطوبة. ثانياً، قد يكون من المفيد مقارنة نتائج نموذج ARIMA مع نماذج أخرى مثل الشبكات العصبية الصناعية (ANN) أو نماذج الانحدار الذاتي المتكامل (SARIMA) للحصول على صورة أشمل. أخيراً، يمكن توسيع الدراسة لتشمل محطات أخرى في المنطقة للحصول على نتائج أكثر تعميمًا.
Questions related to the research
  1. ما هو الهدف الرئيسي من الدراسة؟

    الهدف الرئيسي من الدراسة هو بناء نموذج للتنبؤ بالهطل المطري السنوي في محطة حصن سليمان باستخدام النمذجة الرياضية ومنهجية بوكس-جنكنز.

  2. ما هي الفترة الزمنية التي تم تحليلها في الدراسة؟

    تم تحليل بيانات الهطل المطري السنوي للفترة بين عامي 1959-2011.

  3. ما هي النتائج الرئيسية التي توصلت إليها الدراسة؟

    توصلت الدراسة إلى أن الهطل المطري في محطة حصن سليمان في تناقص بمعدل 3.7 ملم سنوياً، وأن النموذج ARIMA(1,0,0) هو الأنسب لتمثيل البيانات، والنموذج ARIMA(4,1,5) هو الأنسب للتنبؤ بالهطل المطري المستقبلي.

  4. ما هي التوصيات التي قدمتها الدراسة؟

    أوصت الدراسة باستخدام معايير أداء التنبؤ مثل RMSE وMAE وMAPE لاختيار النموذج الأفضل، واستخدام الشبكات العصبية الصناعية (ANN) لمقارنة نتائجها مع منهجية بوكس-جنكنز.


References used
KILSBY, C. G.;COWPERTWAIT, P.S.P; O'CONNELL, P.E.; JONES, P.D.Predicting Rainfall Statistics in England and Wales Using Atmospheric Circulation Variables. International Journal of Climatology, 1997, 523-539
PEKAROVA, P.; PEKAR, J. Long – Term Discharge Prediction For The TurnuSeverin Station (The Danube) Using a Linear Autoregressive Model. Bratislava University Slovak, 2005,7-12
ZAKARIA, S.; AL-ANSARI, N.; KNUTSSON, S.; AL-BADRANY, TH. Arima Models for Weekly Rainfall in the semi-arid Sinjar District at Iraq. Journal of Earth Sciences and Geotechnical Engineering, vol.2, no.3, 2012, 25-55
rate research

Read More

Rainfall is considered as one of the most difficult and complex elements of the hydrological cycle, to understand and model, due to the complexity of air operations that generate rain. The importance of research comes from the direct relationship b etween the rainfall amount and economic & social activities of the population, planning scopes of the water resources management, particularly with respect to the agricultural development. The research aims to highlight the rainfall amounts in Tartous station which is located in the southern part of the Syrian coast, and applying one model of Box-Jenkins models for the purpose of predicting future rainfall amounts. Multiple Arima models have been tested. The results showed that the model SARIMA (3,0,4) was the best one. Data were divided into 43 years to build the model and eight years to test it. The test results gave high accuracy in the performance, and the model was used to predict the values of annual rainfall for the next twenty years.
The velocity and direction of the wind greatly affect marine navigation and the movement of merchant ships in harbors, It also affects the rapid movement of pollutants into the air from industrial cities to agricultural and residential areas. The importance of the research comes from forecasting monthly wind velocity in the Tartous station and to achieve this goal the data of time series for the monthly wind velocity at Tartous station in Tartous governorate The methodology of "Box – Jenkins" been used in the study, this methodology relies on finding future forecasts from original data series. Also, the applications “MINITAB, EXCEL” have been used to obtain the results of the study. As a result, the study found that wind velocity value in the ' Tartous station' decreasing, this decline amounted to 0.002 km/h per month during the monitoring period. Also, the appropriate (SARIMA) model for the series was build after it passed the various statistical tests are required, and founded that SARIMA(1,0,0)(1,1,1)12 model is a good representation of the data and the SARIMA(1,0,1)(1,1,0)12 model is the right model to forecast future monthly wind.
This research includes a set of mathematical models for simulating the financial activities. Worked models are determined to approve the form of inflows to the bank and outflows. We tried to study different types of banks, and performed some condi tions to make sure that the bank is working in stabilized situation. Furthermore, we identified the factors affecting the achievement of stability. These models allow more flexibility in the discussion and analysis of banking operations, helping to discern periods approaching the crisis and draw attention to the overall status of the bank. Analyzing these models gives additional time to control withdrawal and take the necessary decision at the time.
Weather forecasting (especially rainfall) is one of the most important and challenging operational tasks carried out by meteorological services all over the world. Itis furthermore a complicated procedure that requires multiple specialized fields o f expertise. In this paper, a model based on artificial neural networks (ANNs) and wavelet Transform is proposed as tool to predict consecutive monthly rainfalls (1933-2009) taken of Homs Meteorological Station on accounts of the preceding events of rainfall data. The feed-forward neural network with back-propagation Algorithm is used in the learning and forecasting, where the time series of rain that detailed transactions and the approximate three levels of analysis using a Discrete wavelet transform (DWT). The study found that the neural network WNN structured )5-8-8-8-1(, able to predict the monthly rainfall in Homs station on the long-term correlation of determination and root mean squared-errors (0.98, 7.74mm), respectively. Wavelet Transform technique provides a useful feature based on the analysis of the data, which improves the performance of the model and applied this technique in ANNmodels for rain because it is simple, as this technique can be applied to other models.
The development of gas turbine needs to studying and development each of its components. In this paper we will focus on the study of the compressor used in gas turbines. So we can study it we will be using mathematical modeling, which aims to find a mathematical description of the system studied and study the dynamic behavior of it in order to improve his performance, and use mathematical modeling to save time and cost at the improvement and development of products or in the case of the creation of new products through simulation that enrich us all costly and timeconsuming testing stations. Also it helps us to clarify the physical phenomena or unwanted effects and enable us to determine the full parameters required in accurate design.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا